K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Do lỗi kĩ thuật nên kí hiệu tam giác viết là t/g

Xét t/g ANM và t/g CNE có:

AN = NC (gt)

ANM = CNE ( đối đỉnh)

MN = NE (gt)

Do đó, t/g ANM = t/g CNE (c.g.c)

=> AM = CE (2 cạnh tương ứng)

AMN = CEN (2 góc tương ứng)

Mà AMN và CEN là 2 góc so le trong

=> AM // CE hay BM // CE

Nối MC

Xét t/g BMC và t/g ECM có:

BM = CE ( cùng = AM)

BMC = ECM (so le trong)

MC là cạnh chung

Do đó, t/g BMC = t/g ECM (c.g.c)

=> BC = ME (2 cạnh tương ứng)

Mà ME = 2MN => BC = 2MN ( đpcm)

9 tháng 12 2016

mơn bn nha

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

21 tháng 4 2019

A B C D E I

a, Áp dụng định lý Pytago vào tam giác vuông ABC có:

 AB2 + AC2 = BC2

9+ AC2 = 152

81 + AC2 = 225

AC2 = 225 - 81

AC= 144

AC = 12 (cm)

Xét tam giác ABC có: AB < AC < BC.
nên góc ACB <  ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )

b,do A là trung điểm BD (gt)
nên AB=DB 
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C

c,...

21 tháng 4 2019
10 sao nhé10 K NHA !
14 tháng 4 2019

a, xét t.giác BMC và t.giác DMA có:

           BM=DM(gt)

          \(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)

          AM=MC(gt)

=>t.giác BMC=t.giác DMA(c.g.c)

=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC

b,xét t.giác MAB và t.giác MCD có:

            MA=MC(gt)

            \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)

            MB=MD(gt)

=>t.giác MAB=t.giác MCD(c.g.c)

=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC

xét t.giác DAB và t.giác DCB có:

          \(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)

          DB cạnh chung

          \(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)

=>t.giác DAB=t.giác DCB(g.c.g)

=>DA=DC

=>t.giác ACD cân tại D

           

16 tháng 6 2020

Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

5 tháng 10 2019

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

5 tháng 10 2019

Hỏi đáp Toán