Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C P D M N
\(\Delta ABC \) có : + M là trung điểm của AB
+ P là trung điểm của BC
=> MP là đường TB
=> MP // AC
\(\Rightarrow\frac{MP}{AC}=\frac{BP}{BC}\)( định lí Talet ) ( 1 )
\(\Delta ABC\)có : + N là trung điểm củ AC
+ P là trung điểm của PC
=> NP là đường TB
=> NP // AB
\(\Rightarrow\frac{NP}{AB}=\frac{CP}{CB}\)( định lí Talet ) ( 2 )
Mà BP = CP ( P là trung điểm BC ) ( 3 )
Từ (1)(2)(3) => \(\frac{MP}{AC}=\frac{NP}{AB}\)
\(\Rightarrow\frac{PM}{PN}=\frac{AC}{AB}\Rightarrow\frac{DM}{DN}=\frac{PM}{PN}\)
Mà \(\frac{DM}{DN}=\frac{AC}{AB}\left(gt\right)\)
=> PD là đường phân giác \(\widehat{MPN}\)
DMA = MAN = AND = 900 (gt)
=> AMDN là hình chữ nhật
=> AB // ND
mà D là trung điểm của BC (gt)
=> N là trung điểm của AC
mà N là trung điểm của DE (gt)
=> ADCE là hình bình hành
mà DE _I_ AC (gt)
=> ADCE là hình thoi
Gọi I, J lần lượt là trung điểm AP, BP
tam giác AMP vuông có trung tuyến MI =>MI=AP2MI=AP2 (1)
tam giác ABP có DJ là đường trung bình =>DJ=AP2DJ=AP2 (2)
từ (1, 2)=> MI =DJ (3)
chứng minh tương tự ta có DI =LJ (4)
mặt khác DIPJ là hình bình hành =>ˆDIP=ˆDJPDIP^=DJP^ (5)
và có ˆPIM=2.ˆPAMPIM^=2.PAM^ và ˆPJL=2.ˆPBLPJL^=2.PBL^ mà ˆPAM=ˆPBLPAM^=PBL^ suy ra ˆPIM=ˆPJLPIM^=PJL^ (6)
cộng (5), (6) vế theo vấ ta được ˆDIM=ˆLJDDIM^=LJD^ (7)
từ (3, 4, 7)=>△DIM=△LJD△DIM=△LJD
suy ra DM =LD (đpcm)
À đúng rồi đấy chứ không sao đâu tại bấm vào nút link mà lộn qua nút sai