Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0\\ \Rightarrow2\widehat{C}+\widehat{C}=3\widehat{C}=120^0\\ \Rightarrow\widehat{C}=40^0\Rightarrow\widehat{B}=80^0\)
2, Theo bài ra ta có : ^A = 600 ; ^B = 2.^C (*)
^A + ^B + ^C = 1800 ( tổng 3 góc trong tam giác ) (**)
Lấy (*) thay vào (**) ta được : ^A + 2.^C + ^C = 1800
<=> 600 + 3.^C = 1800 <=> 3.^C = 1200
<=> ^C = 400 ; => ^B = 2.400 = 800
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
a)
Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ
Xét trong tam giác ABC. Ta có:
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)
\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)
=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)
b)
MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)
AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)
=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)
=> \(\widehat{MCB}=\widehat{MKB}\)
b) Ta có : KB vuông góc với BM
lấy E đối xứng với M qua B
=> K B là đường trung trực của ME
Để chứng minh AE=AM
Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ