Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất góc ngoài tam giác = tổng 2 góc trong không kề với nó.
Ta có
( B + C ):( A + C ):( A + B ) = 4:5:6
=> ( B + C )/4 = ( A + C )/5 = ( A + B )/6
Theo tính chất tỉ lệ thức kết hợp với tổng 3 góc trong tam giác = 360 độ.
=> ( B + C )/4 = ( B + C + A + C + A + B )/( 4 + 5 + 6 ) = 360/15 = 24
=> B + C = 96 (1)
Tương tự ta có
A + C = 120 (2)
A + B = 144 (3)
Kết hợp (1);(2);(3) ta có
A = 84; B = 60; C = 36
=> A:B:C = 84:60:36 = 7:5:3
k mk nhé
Gọi số đo các góc ngoài tại 3 đỉnh A,B,C lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/6 và a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{180}{15}=12\)
Do đó: a=48; b=60; c=72
=>\(\widehat{A}=132^0;\widehat{B}=120^0;\widehat{C}=108^0\)
=>Ba góc trong lần lượt tỉ lệ với 11;10;9
Gọi a,b,c lần lượt là các góc ngoài của tam giác tỉ lệ với các số 4;5;6
\(\frac{a}{4}\)=\(\frac{b}{5}\)=\(\frac{c}{6}\) và a+ b+c = 180
Áp dụng tính chất của dãy tỉ số = nhau, ta có:
\(\frac{a}{4}\)=\(\frac{b}{5}\)=\(\frac{c}{6}\)= \(\frac{a+b+c}{4+5+6}\)=\(\frac{180^{ }}{15}\)= 12
Vậy \(\frac{a}{4}\)=12 => a= 48
\(\frac{b}{5}\)= 12 => b= 30
\(\frac{c}{6}\)=12 => c= 72
Vậy các góc ngoài của tam giác tương ứng tỉ lệ vs các số lần lượt là: 480 ; 300 và 720.
Chúc a hk tốt ^^
tiện thể tặng a lun: