Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo mối quan hệ giữa cạnh và góc trong tam giác:
\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)
Do AC > AB nên AC > CD.
Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)
c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)
Vậy nên \(\widehat{BAM}>\widehat{CAM}\)
Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.
hình bạn tự vẽ nhé
a) xét tg ABM và tg ECM có : +AM=ME (GT) +BM=MC (AM là trung tuyến) (gt) + góc AMB=góc EMC (đối đỉnh)
=> tg ABM=tg ECM (C.G.C)
b) xét tg ABC có : góc B = 90 độ (gt) => AC là cạnh lớn nhất => AC>AB. Mà AB=CE (2 cạnh tương ứng tg ABM và tg CEM)
=> AC>AE
c) trong tg ACE có : góc CEA đối diện với cạnh AC. góc CAM đối diện với cạnh CE
mà AC>CE => góc CEA>góc CAM mà góc CEA=góc MAB ( 2 góc tương ứng tg ABM và tg CEM) => góc MAB>góc MAC
A B C M D 30 độ
Nối B với D
Xét \(\Delta AMC\)và \(\Delta DMB\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{DMB}\)(2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> AC = BD (2 cạnh tương ứng)
\(\widehat{ACM}=\widehat{DBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => AC // BD
Ta có: \(AC//BD;AB\perp AC\)(do tam giác ABC vuông tại A
\(\Rightarrow AB\perp BC\) \(\Rightarrow ABD=90^o\)
Xét \(\Delta BAC\)và \(\Delta ABD\)có:
AB là cạnh chung
\(\widehat{BAC}=\widehat{ABD}=90^o\)
AC = BD (cm a)
\(\Rightarrow\Delta BAC=\Delta ABD\left(c.g.c\right)\)
=> BC = AD (2 cạnh tương ứng)
Mà AD = 2AM => BC = 2AM