Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải cách lớp 8
Từ D kẻ DE⊥AC(E∈BC)
Xét ΔADBvà ΔEBD
^ADB=^EBD
BD cạnh chung
^ABD=^EBD
⇒ΔABD=ΔEBD(g−c−g)
⇒AD=ED
⇒^DAE=^DEA= 45 độ ( 1 )
Ta thấy : Tứ giác ADEH là tứ giác nội tiếp vì góc AHE + góc ADE = 180 độ ( 2 )
Từ ( 1 ) và ( 2 ) suy ra góc AHD = góc DHE = 90 độ / 2 = 45 độ
⇒^BHD=^DHE( = 45 độ )
⇒HD // AB ( 2 góc so le trong ) ( đpcm )
Vẽ góc ngoài CAx của ∆ABC tại đỉnh A
Ta thấy HAx là góc ngoài ∆BAH
=> hAx = ABH + AHB = ABC + 90°
=> HAx = 2( ABD + 45°) (1)
Vì CAx là góc ngoài ∆BAD
=> CAx = ABD + BDA = ABD + 45° (2)
Từ (1) và (2)
=> CAx = \(\frac{1}{2}\)HAx
=> AC là phân giác HAx
Xét ∆ABH ta có :
BD là phân giác trong
AD là phân giác ngoài
=> HD là phân giác AHC
=> AHD = \(\frac{1}{2}AHC=45°\)(3)
Xét ∆BAH ta có :
AHB + ABH + BAH = 180°
=> BAH = 45° (4)
Từ (3) và (4) ta có :
=> AHB = BAH = 45°
Mà 2 góc này ở vị trí so le trong
=> HD//AB
Sao đăng nhiều tek bạn. Đăng từng bài thoy!
1/ Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) => BC là phân giác góc ABD
Xét tam giác ACH và tam giác DCH có:
CH: cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=> CB là phân giác góc ACD
b/ Ta có: tam giác ABH = tam giác DBH (đã chứng minh trên)
=> BA = BD (2 cạnh tương ứng)
Ta có: tam giác ACH = tam giác DCH (đã chứng minh trên)
=> CA = CD (2 cạnh tương ứng)
c/ Ta có: tam giác ACH = tam giác DCH
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=450
Trong tam giác CHD có:
\(\widehat{C}\)+\(\widehat{H}\)+\(\widehat{D}\)=1800
450 + 900 + góc D = 1800
=> góc ADC = 450
d/ Đường cao AH phải có thêm điều kiện BH = HC => chứng minh tam giác ABH = CDH để AB//CD
2/ Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{B}=\widehat{H}=90^0\)
AH = BD (GT)
=> tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{BHD}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // HD (đpcm)
3/ Ta có hình vẽ:
A I M N B C
a/ Xét tam giác ABI và tam giác ACI có:
AB = AC (GT)
BI = CI (GT)
AI: chung
=> tam giác ABI = tam giác ACI (c.c.c)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) => AI là phân giác \(\widehat{BAC}\)
b/ Xét tam giác AMB và tam giác ANC có:
MB = NC (GT)
\(\widehat{ABC}=\widehat{ACB}\)
Mà góc ABC + ABM = 1800
và góc ACB + ACN = 1800
=> \(\widehat{ABM}\)=\(\widehat{ACN}\)
AB = AC (GT)
=> tam giác AMB = tam giác ANC (c.g.c)
=> AM = AN (2 cạnh tương ứng)
c/ Ta có: tam giác ABI = tam giác ACI
=> \(\widehat{AIB}\)=\(\widehat{AIC}\) (2 góc tương ứng)
Mà \(\widehat{AIB}\)+\(\widehat{AIC}\)=1800
=> \(\widehat{AIB}\)=\(\widehat{AIC}\)=\(\frac{1}{2}\)1800 = 900
Vậy AI vuông góc BC (đpcm)
Làm tiếp mấy câu sau:
4/ Ta có hình vẽ:
O x y t A B M C D H
a/ Xét tam giác OAM và tam giác OBM có:
OA = OB (GT)
\(\widehat{AOM}=\widehat{BOM}\) (GT)
OM: cạnh chung
=> tam giác OAM = tam giác OBM (c.g.c)
b/ Ta có: tam giác OAM = tam giác OBM (câu a)
=> AM = BM (2 cạnh tương ứng)
c/ Gọi giao điểm của AB và OM là N
Xét tam giác OAN và tam giác OBN có:
OA = OB (GT)
\(\widehat{AON}=\widehat{BON}\) (GT)
ON: chung
=> tam giác OAN = tam giác OBN (c.g.c)
=> \(\widehat{ONA}=\widehat{ONB}\) (2 góc tương ứng)
Mà \(\widehat{ONA}+\widehat{ONB}=180^0\)
=> \(\widehat{ONA}=\widehat{ONB}=\frac{1}{2}180^0=90^0\)
=> OM vuông góc AB hay OH vuông góc AB
Ta có: AB // CD, mà AB \(\perp\)OH = >CD \(\perp\)OH (đpcm)
5/ Ta có hình vẽ:
x O y A B C D E
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{AOB}\): góc chung
OA+AC=OB+BD => OC = OD
Vậy tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b/ Ta có: AC = BD (GT) (1)
Ta có: \(\widehat{OAD}\)+\(\widehat{DAC}\)=1800 (kề bù)
Ta có: \(\widehat{OBC}\)+\(\widehat{CBD}\)=1800 (kề bù)
Mà \(\widehat{OAD}\)=\(\widehat{OBC}\) => \(\widehat{DAC}\)=\(\widehat{CBD}\) (2)
Ta có: góc C = góc D (tam giác OAD = tam giác OBC) (3)
Từ (1),(2),(3) => tam giác EAC = tam giác EBD
c/ Xét tam giác OAE và tam giác OBE có:
OA = OB (GT)
OE: cạnh chung
AE = BE (do tam giác EAC = tam giác EBD)
=> tam giác OAE = tam giác OBE (c.c.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác góc xOy
6/ Ta có hình vẽ:
A B C D
a/ Xét tam giác ADB và tam giác ADC có:
AB = AC (GT)
AD: cạnh chung
BD = DC (GT)
=> tam giác ADB = tam giác ADC (c.c.c)
b/ Ta có: tam giác ADB = tam giác ADC (câu a)
=> \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng)
Mà \(\widehat{ADB}\)+\(\widehat{ADC}\)=1800
=> \(\widehat{ADB}=\widehat{ADC}\)=900
Vậy AD \(\perp\) BC (đpcm)
A B C H D E 30
a.Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
góc A+góc B+góc C=180
hay 90 +góc B+30=180
góc B=60 độ
Xét tgiac ABH và tgiac ADH có:
AH chung
góc AHB =góc AHD=90
HB=HD(gt)
Vậy tgiac ABH=tgiac ADH(c.g.c)
=> AB=AD(2 cạnh tương ứng)
=>tgiac ABD cân tại A mà có góc B=60 độ
Vậy tgiac ABD đều
b.tgiac ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tgiac ADC có góc DAC=góc DCA=30
Vậy tgiac ADC cân tại D=> AD=DC
Xét tgiacADH và tgiac CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tgiac ADH=tgiac CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
c.theo câu b ta có DE=DH(2 cạnh tương ứng)
Vậy tgiac DEH cân tại E
=> góc DEH=(180-góc EDH):2 (1)
tgiac DAC cân tại D
=> góc DAC=(180-góc ADC):2 (2)
mà gócADC=gócEDH(đối đỉnh) (3)
từ (1);(2) và (3) ta có góc DEH=góc DAC
mà góc DAC và góc DEH ở vị trí so le trong
Nên theo tiên đề oclit ta có HE//AC