Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
A B C H D 1 2 3 1
a) \(\bigtriangleup ABH\) vuông tại H (GT)
=> \(\widehat{B}+\widehat{BAH}=90^o\) (định lí tam giác vuông) (1)
Ta có : \(\widehat{BAH}+\widehat{A_3}=90^o\) (GT) (2)
Từ (1) và (2) => \(\widehat{B}+\widehat{BAH}=\widehat{BAH}+\widehat{A_3}\)
\(\Rightarrow\widehat{B}=\widehat{A_3}\) hay \(\widehat{ABH}=\widehat{HAC}\)
b) \(\bigtriangleup DAH\) vuông tại H
=> \(\widehat{D_1}+\widehat{A_2}=90^o\) (tính chất tam giác vuông) (1)
Ta có : \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=90^o\) (GT) (2)
Từ (1) và (2) => \(\widehat{D_1}+\widehat{A_2}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}\)
\(\Rightarrow\widehat{D_1}=\widehat{A_1}+\widehat{A_3}\)
Mà \(\widehat{A_1}=\widehat{A_2}\) (GT)
=> \(\widehat{D_1}=\widehat{A_2}+\widehat{A_3}\)
Mà \(\widehat{A_2}+\widehat{A_3}=\widehat{DAC}\)
=> \(\widehat{D_1}=\widehat{DAC}\) hay \(\widehat{ADC}=\widehat{DAC}\)
mk lam cau a) cau b) tuong tu bn lam nhe
a) bn chỉ cần dựa vào 2 tam giác vuông ABC và HAC
góc ABH = 90 -C
góc HAC = 90-C
=> ABH = HAC
( bây giờ thì bn thấy wa dễ chứ)
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
ĐỀ SAI
nếu là phân góc góc ngoài đỉnh C thì lm sao mà cắt AB tại E
=> đề đúng pải là phân giác góc C
Đề mình chép đúng đấy bạn, không sai đâu! Bạn giải cho mình được không?
ban tu ve hinh nha
Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc
hay góc DAC = góc EAB
Xét tam giác ADC và tam giác ABE có :
AD = AB ; AC = AE ; góc DAC = góc EAB
=> tam giác ADC = tam giác ABE => DC = BE
Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD
mà góc AKE = góc BKC (đối đỉnh) , góc AKE + góc AEB = 90 độ
=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ
=> góc DC vuông góc BE