K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a: Xét tứ giác ANDM có 

ND//AM

AN//DM

Do đó: ANDM là hình bình hành

mà \(\widehat{NAM}=90^0\)

nên ANDM là hình chữ nhật

hay AD=NM

16 tháng 9 2019

tự kẻ hình : 

có M; N lần lượt là trung điểm của AB; AC (gt)

=> MN là đường tb của tam giác ABC (đn)

=> MN // BC (đl)

góc BCNM là tứ giác

=> BCNM là hình thang (đn)

17 tháng 9 2019

@Soái muội:Uyên làm đúng rồi đó bạn! Làm theo bạn ấy đi

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

12 tháng 3 2018

a) Xét tứ giác ABEC có  AB // CE; AC // BE .

Vậy nên ABEC  là hình bình hành. Suy ra AB = CE.

Do MN là đường trung bình hình thang ABCD nên ta có :

\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)

b) Do ABCD là hình thang cân nên ta có:

\(AD=BC;DB=AC\)

Xét tam giác ABD và tam giác BAC có:

Cạnh AB chung

AD = BC

BD = AC

\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)

Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.

c) Do ABEC là hình bình hành nên AC = BE

Lại có AC = BD nên BD = BE

Suy ra tam giác BDE cân tại B.

Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.

Lại có theo câu a thì MN = DE/2

Giả thiết lại cho MN = BH. Vậy nên BH = DE/2

Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.

Vậy BDE là tam giác vuông cân tại B. 

a: Xét tứ giác ANDM có

\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)

Do đó: ANDM là hình chữ nhật