Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D F O
a) +) Ta có:
^BOC = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)= 120\(^o\)
+) OF là phân giác của ^BOC
=> ^BOF = ^COF = 60\(^o\)
+) Ta có: ^BOE + ^BOC = 180\(^o\)
=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)
=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)
+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:
^BOF = ^BOE = 60\(^o\)
OB chung
^OBF = ^OBE ( BO là phân giác ^EBF )
=> \(\Delta\)OBF = \(\Delta\)OBE
=> OE = OF (1)
+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:
^DOC = ^FOC = 60\(^o\)
OC chung
^DCO = ^FCO ( CO là phân giác ^DCF )
=> \(\Delta\)ODC = \(\Delta\)OFC
=> OD = OF (2)
Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)
=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)
Tương tự ta có thể chứng minh đc:
^OFD = ^ODF = 30\(^o\)
^OED = ^ODE = 30\(^o\)
=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)
=> Tam giác DEF đều
Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.
Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)
=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)
Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)
Từ (1); (2) => ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)
a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ
A B C D E O F
a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 60 (gt)
=> góc ABC + góc ACB = 180 - 60 = 120 (1)
BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)
CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)
=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)
=> góc DBC + góc ECB = 1/2*120 = 60
xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)
=> góc BOC = 180 - 60 = 120
b, góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)
=> góc BOE = 180 - 120 = 60 (2)
OF là phân giác của góc BOC (gt)
=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)
=> góc BOF = 1/2*120 = 60 = góc FOC (3)
(2)(3) => góc BOF = góc BOE
xét tam giác BOF và tam giác BOE có : BO chung
góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)
=> tam giác BOF = góc BOE (g-c-g)
c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)
=> góc DOC = 60
góc FOC = 60 (câu b)
=> góc DOC = góc FOC
xét tam giác DOC và tam giác FOC có : OC chung
góc FCO = góc DCO do OC là phân giác của góc BCA (gt)
=> tam giác DOC = tam giác FOC (g-c-g)
=> OD = OF (Đn)
tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)
=> OE = OF = OD
d, góc EOB + góc BOF = góc EOF
mà góc EOB = góc BOF = 60
=> góc EOF = 60.2 = 120 (4)
góc FOC + góc OCD = góc FOD
mà góc FOC = góc OCD = 60
=> góc FOD = 60.2 = 120 (5)
(4)(5) => góc FOD = góc EOF = 120
xét tam giác EOF và tam giác DOF có : OF chung
OE = OD (Câu c)
=> tam giác EOF = tam giác DOF (c-g-c)
=> EF = DF (đn)
=> tam giác EFD cân tại F (đn) (6)
OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2
mà góc EOF = 120 (cmt)
=> góc EFO = (180 - 120) : 2 = 30
tương tự cm được góc OFD = 30
mà góc OFD + góc EFO = góc EFD
=> góc EFD = 30 + 30 = 60 và (6)
=> tam giác EFD đều (tc)
ai đúng và nhanh nhất tớ !
a) Xét tam giác ABC có
(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)
hay 60o+ABC+ACB=180o
(góc) ABC+ACB=180o-60o=120o
Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB
=> (góc) DBC+DCB= \(\frac{ABC+ACB}{2}\)\(=\)\(\frac{120^o}{2}=60^o\)
Xét tam giác DBC có
(góc) BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)
hay (góc) BDC+60o=180o
(góc) BDC =180o-60o=120o
(xl, mik làm đc câu a thôi nha)