Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ
a) XÉt \(\Delta AED\)và \(\Delta AEC\)CO:
\(AE\)CHUNG
\(AD=AC\)( GIẢ THIẾT)
\(DE=DC\)( E LÀ TRUNG ĐIỂM CỦA DC)
DO ĐÓ \(\Delta AED=\Delta AEC\)( C.C.C)
VẬY \(\Delta AED=\Delta AEC\)
B) Xét \(\Delta ADC\)có: \(AD=AC\) (giả thiết)
\(\Rightarrow\Delta ADC\)là \(\Delta\)cân tại \(A\)
mà \(E\)là trung điểm của \(DC\)
\(\Rightarrow AE\)là đường trung trực của \(\Delta ADC\)
\(\Rightarrow AE\perp DC\)TẠI \(E\)
VẬY \(AE\perp DC\)
C) THEO CÂU B) \(AE\)LÀ ĐƯỜNG TRUNG TRỰC CỦA \(DC\)
MÀ \(F\in AE\)
\(\Rightarrow F\)CÁCH ĐỀU \(D\)VÀ \(C\)
\(\Rightarrow\widehat{AFD}=\widehat{AFC}\)
VẬY \(\widehat{AFD}=\widehat{AFC}\)
tự vẽ hình nha
a, Ta có : CAD = CAB + BAD = CAB + 90
EAB = EAC + CAB = CAB + 90
=> CAD = EAB
ta có : tam giác ACD = AEB ( c.g.c)
b,gọi M,N lần lượt là giao điểm của CD với EB
ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )
vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )
nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD
c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED
=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E có hai đường thẳng EA và ED cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc
Hình tự vẽ
có DAB=EAC =90*
=>DAB+BAC=EAC+BAC
=>DAC=BAE
Xét tam giác ACD và Tam giác AED có:
AB=AD(gt)
DAC=BAE(cmt)
AE=AC(gt)
=>Tam giác ACD= tam giác AEB(c-g-c)
b) Gọi là giao điểm của EB và CD
F là giao của CD và AB
Xét tam giác FAC và tam giác FIB, có:
AFD=IFD(đối đỉnh)
ADF=IBF(tam giác ACD= tam giác AEB0
=>DAF=BIF=90*
=>EB vuông góc vớiCD
a, Ta có : CAD = CAB + BAD = CAB + 90
EAB = EAC + CAB = CAB + 90
=> CAD = EAB
Ta có : tam giác ACD = AEB ( c.g.c)
b, Gọi M,N lần lượt là giao điểm của CD với EB
Ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )
Vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )
Nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD
c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED
=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E có hai đường thẳng EA và ED cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc
nha
a) Xét ∆AEB và ∆ADC ta có :
EA = AC
DA = AB
EAB = DAC( 2 góc đối đỉnh)
=> ∆AEB = ∆ADC (c.g.c)(dpcm)
=> BE = DC ( 2 cạnh tương ứng) (dpcm)
a)
có \(\widehat{DAC}=90^0+\widehat{BAC}\) ; \(\widehat{BAE}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)
Xét \(\Delta ADC\)và \(\Delta ABE\)
có \(\widehat{DAC}=\widehat{BAE}\)
\(AB=AD\)
\(AC=AE\)
nên \(\Delta ADC=\text{}\Delta ABE\left(c-g-c\right)\)
b)
có\(\Delta ADC=\text{}\Delta ABE\)
nên \(CD=BE\)
VẼ HÌNH LUÔN NHA