Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ DE song song với AB (E thuộc AC) suy ra \(\frac{DE}{BA}=\frac{DC}{BC}\)
ta có AD là tia phân giác của góc BAC => góc BAD = góc DAC = 60o => góc ADE= 60o (slt với góc BAD)
=> tam giác ADE đều => DE=AD =>\(\frac{AD}{AB}=\frac{DC}{BC}\)
=> \(\frac{1}{AD}=\frac{BC}{AB.DC}\)
=> \(\frac{1}{AD}=\frac{BD+DC}{AB.DC}\)vì (BC= BD+DC) =>\(\frac{1}{AD}=\frac{BD}{AB.DC}+\frac{1}{AB}\)
ta có AD là phân giác của góc BAC =>\(\frac{BD}{DC}=\frac{AB}{AC}\)=> \(\frac{BD}{AB.DC}=\frac{AB}{AB.AC}=\frac{1}{AC}\)
=> S\(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
mình trình bày chi tiết một chút để bạn dễ hiểu nhé nếu bạn trình bày thì có thể lược bớt những chỗ có thể bỏ nha!!!
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 1:
Vì AD // BC => Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.
=> Góc A = (180 + 20) : 2 = 100 độ
Góc B = 80 độ.
Vì AD // BC => Góc C cộng góc D bằng 180 độ .
Mà góc D bằng hai lần góc C => 3C = 180 độ
=> Góc C bằng 60 độ. Góc D bằng 120 độ.