K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

Sắp tới tháng cô hồn rồi. Ai cũng biết tháng cô hồn rất xui. Vì vậy ai đọc được cái này thì gửi cho đủ 30 người. Vì lúc trước có cô gái đọc xong không gửi, 2 ngày sau khi đi tắm cô ấy bị ma cắn cổ mà chết và mẹ cô ấy cũng chết. 2 vợ chồng kia đọc xong liền gửi đủ 30 người, hôm sau họ trúng số. Nên bạn phải gửi nhanh!!!!!!!...\\n

24 tháng 7 2021

Sắp tới tháng cô hồn rồi. Ai cũng biết tháng cô hồn rất xui. Vì vậy ai đọc được cái này thì gửi cho đủ 30 người. Vì lúc trước có cô gái đọc xong không gửi, 2 ngày sau khi đi tắm cô ấy bị ma cắn cổ mà chết và mẹ cô ấy cũng chết. 2 vợ chồng kia đọc xong liền gửi đủ 30 người, hôm sau họ trúng số. Nên bạn phải gửi nhanh!!!!!!!...\\n

2 tháng 2 2019

A B C M N 1 2 2 1 E F 1 1 2 2 O

CM : a) Ta có: t/giác ABC cân tại A

=> góc B2 = góc C2

Mà góc B1 + góc B2 = 1800

       góc C1 + góc C2 = 1800

=> góc B1 = góc C1

Xét t/giác AMB và t/giác ANC

có AB = AC (gt)

  góc B1 = góc C1 (cmt)

  MB = NC (gt)

=> t/giác AMB = t/giác ANC (c.g.c)

=> AM = AN (hai cạnh tương ứng)

=> t/giác AMN là t/giác cân tại A

b) Ta có: t/giác AMN cân tại A

=> góc M = góc N

Xét t/giác BME và t/giác CNF 

có góc E1 = góc F1 = 900 (gt)

  BM = CN (gt)

  góc M = góc N (cmt)

=> t/giác BME = t/giác CNF (cạnh huyền - góc nhọn)

c,d) tự làm

A B C E F M D N

a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\) 

Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :

^AFC = ^AEB = 900\(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)

b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900

Xét \(\Delta AED\) và  \(\Delta AFD\) có : ^AFD = ^AED = 90( cmt ) ; \(AF=AE\left(cmt\right);AD\)  chung

\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )

c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và  \(\Delta AFN\) có :

\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD );  \(AN\) chung. 

\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE =  ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )

=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE

Nên N thuộc AM  \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)

Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau

LOGIC ? 

Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !

Ý thức ko mua đc ''='' tiền.

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

3 tháng 4 2020

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

3 tháng 4 2020

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng