Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm câu a thôi nha
A B C H K
a) trên tia HB lấy HK sao cho HK = HC
xét tam giác ACH và tam giác AKH có :
AH ( cạnh chung )
\(\widehat{AHC}=\widehat{AHK}=90^o\)
HC = HK ( theo cách vẽ )
suy ra : tam giác ACH = tam giác AKH ( c.g.c )
=> HC = HK ( hai cạnh tương ứng )
=> \(\widehat{C}=\widehat{AKH}\)( hai góc tương ứng )
=> AC = AK ( hai cạnh tương ứng )
tam giác AKB có \(\widehat{AKH}\)là góc ngoài tại đỉnh K có :
\(\widehat{AKH}\)= \(\widehat{KAB}+\widehat{B}\)
Mà \(\widehat{C}=2.\widehat{B}\)hay \(\widehat{AKH}\)= \(2.\widehat{B}\)
\(\Rightarrow2.\widehat{B}=\widehat{KAB}+\widehat{B}\)
\(\Rightarrow\widehat{KAB}=\widehat{B}\)
=> tam giác KAB cân tại K
=> KA = KB
=> AC + CH = KB + HK = BH
b)
A B C H
kẻ BH _|_ AC
xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)
^BAH = 60 (Gt)
=> ^ABH = 30; xét tam giác ABH vuông tại H
=> AH = AB/2 (đl)
=> AB = 2AH (1)
Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)
có HC = AC - AH
=> BC^2 = HB^2 + (AC - AH)^2
=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)
=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ
a) Xét \(\Delta ABM\) và \(\Delta DCM\)có :
AM=DM ( gt )
BM=MC ( gt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )
b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
nên AB // BC
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.