Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 1 A D B C E
Xét \(\Delta CDE\) có \(\widehat{E_1}>\widehat{A}\), mà \(\widehat{A}\) là góc tù nên \(\widehat{E_1}\) là góc tù.
Suy ra CD > DE. (1)
Xét \(\Delta BCD\) có \(\widehat{D_1}>\widehat{A}\) nên \(\widehat{D_1}\) là góc tù. Suy ra BC > CD. (2)
Từ (1) và (2) suy ra BC > DE.
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.
Nối C vs D
Xét tam giác ADEcó góc DEC là góc ngoài tại E
=> góc DEC=BAC+EDA
mà BAC> 90' (gt)
=>DEC>90 => DEC là góc tù
Xét tam giác DEC có DEC là góc tù
=>DC là cạnh lớn nhất trong tam giác ( đối diện vs góc tù)
=>DC>DE(1)
Từ (1),(2) ,=>DE<DC<BC
=>DE,BC (đpcm)
A B C D 1 2 1 2 E
a ) Ta có : gócA = 90o
=> gócD1 và gócB1 đều là góc nhọn ( vì trong tam giác vuông thì có một góc vuông và 2 góc nhọn )
=> gócD1 < 90o ( Số đo của góc nhọn luôn luôn bé hơn số đo của góc vuông )
=> gócD1 < gócA ( 1 )
Mà : gócD1 là góc đối diện của BA
( 2 )
: gócA là góc đối diện của BD
Từ ( 1 ) và ( 2 ) suy ra : BA < BD ( Vì trong một tam giác cạnh đối diện với góc lớn hơn thì có số đo lớn hơn ) ( 3 )
Ta có : gócD1 + gócD2 = gócADC ( DB nằm giữa DA và DC )
=> gócD2 = gócADC - gócD1 = góc bẹt - góc nhọn = góc tù ( Vì góc bẹt = 180o , góc nhọn bé hơn 90o )
=> gócD2 > 90o ( Vì số đo của góc tù lớn hơn góc vuông )
=> gócD2 > gócA ( 4 )
Mà : gócA là góc đối diện với BD
( 5 )
: gócD2 là góc đối diện với BC
Từ ( 4 ) và ( 5 ) suy ra : BC > BD ( Vì trong tam giác cạnh đối diện với góc có số đo lớn hơn thì lớn hơn ) ( 6 )
Từ ( 3 ) và ( 6 ) suy ra : BA < BD < BC ( điều phải chứng minh )
b ) Ta có : gócD2 > gócA ( cmt ) ( 7 )
Mà : gócD2 là góc đối diện với BC
( 8 )
: gócA là góc đối diện với DE
Từ ( 7 ) và ( 8 ) suy ra : BC > DE ( Vì trong tam giác cạnh đối diện với ............................................ )
Học tốt !
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.