Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E O F
\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)
Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp
b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)
\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )
\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)
\(\Rightarrow DF\perp CA\)
a) có 2 góc vg cùng nhìn 1 cạnh
b)EAC=ACO
tam giác AOC cân tại O
=>.......................
c) theo câu a =>AFE=ADE
từ câu b =>CAB=CAE
CAB=BCD
=>...........................
d) đang suy nghĩ
a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)
Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)
b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)
Nên ΔACE vuông tại C
Xét 2 tam giác vuông ABD và ACE có
\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))
Nên ΔABD ~ ΔACE
Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)
Hay AB.AE=AD.AC
c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)
Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)
Mà \(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))
Do đó \(\widehat{DFE}=\widehat{AEC}\)
Ta lại có 2 góc này ở vị trí so le trong
Nên DF song song EC
Mà EC vuông góc AC
Suy ra DF vuông góc AC
Lời giải:
a)
$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)
$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$
Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b)
Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:
\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$
\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$
Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$
c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.
Ta có:
\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$
Mặt khác:
$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$
$=2\widehat{IDH}+2\widehat{CDI}$
$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$
$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$
$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$
Từ $(1);(2)$ suy ra đpcm.