Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có
góc BIH=góc AIK
=>ΔBHI đồng dạng vói ΔAKI
=>IB*IK=IA*IH
b: góc BHA=góc BKA=90 độ
=>BHKA nội tiếp
=>góc BAH=góc BKH
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HF là đường cao
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
hay AF/AC=AE/AB
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
AF/AC=AE/AB
Do đó:ΔAFE\(\sim\)ΔACB
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
Giúp mình đang cần gấp