Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E M
a) Xét \(\Delta ABM\)và \(\Delta EBM\)có:
\(BA=BE\left(gt\right)\)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{B}\))
\(BM\)là cạnh chung
Do đó \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
b) Vì \(\Delta ABM=\Delta EBM\)(câu a)
Nên \(AM=EM\)(2 cạnh tương ứng)
Gọi I là giao điểm của đoạn thẳng AD và BE
Xét △ ABI và △ AEI có:
AB =AE ( gt )
A1=A2 ( gt )
AI là cạnh chung
⇒ △ ABI = △ AEI ( c.g.c)
⇒ góc AIB = góc AIE ( cạnh tương ứng )
Mà góc AIB + góc AIE = 180 độ ⇒ góc AIE = Góc AIE = 90 độ
⇒AD ⊥ BE
xét tam giác ADB và tam giác ADEcó
AB=AE(GT)
GÓC BAD = GÓC DAE ( AD LÀ TIA PHÂN GIÁC CỦA GÓC ABC )
AD LÀ CẠNH CHUNG
TỪ 4 Ý CÙA NÊU
SUY RA : TAM GIÁC ADB =TAM GIÁC ADE
SUY RA ; GÓC BDA = GÓC ADE
MÀ GÓC BDA + GÓC ADE = 180 ĐỘ ( KỀ BÙ )
SUY RA : GÓC BDA = GÓC ADE = 180 ĐỘ /2 = 90 ĐỘ
VẬY BE VUÔNG GÓC VỚI AD
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!