Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: DA=DE
b: Xét ΔDEC vuông tại E và ΔDAF vuông tại A có
DE=DA
\(\widehat{EDC}=\widehat{ADF}\)
Do đó: ΔDEC=ΔDAF
c: \(\widehat{BED}=\widehat{BAD}=90^0\)
\(\widehat{EBD}=\dfrac{90^0-40^0}{2}=25^0\)
\(\widehat{EDB}=90^0-25^0=55^0\)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
A B C E M
a) Xét \(\Delta ABM\)và \(\Delta EBM\)có:
\(BA=BE\left(gt\right)\)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{B}\))
\(BM\)là cạnh chung
Do đó \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
b) Vì \(\Delta ABM=\Delta EBM\)(câu a)
Nên \(AM=EM\)(2 cạnh tương ứng)
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
1: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
Suy ra: DA=DE
2: \(\widehat{CAD}=\widehat{CED}=120^0\)
A) XÉT \(\Delta ABC\)
CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)
THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)
\(\widehat{ACB}=180^0-85^0-40^0\)
\(\widehat{ACB}=55^0\)
\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)
\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)
B) TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)
THAY SỐ: \(40^0+\widehat{CBE}=180^0\)
\(\widehat{CBE}=180^0-40^0\)
\(\widehat{CBE}=140^0\)
TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)
THAY SỐ: \(85^0+\widehat{DAC}=180^0\)
\(\widehat{DAC}=180^0-85^0\)
\(\widehat{DAC}=95^0\)
XÉT \(\Delta CBE\)
CÓ: \(\widehat{CBE}=140^0\)
\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)
MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)
\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)
\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)
XÉT \(\Delta ACD\)
CÓ: AC =AD ( GT)
\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)
\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT)
MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)
\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)
THAY SỐ: \(2\widehat{D}+95^0=180^0\)
\(\widehat{D}=\left(180^0-95^0\right):2\)
\(\widehat{D}=42,5^0\)
XÉT \(\Delta BCD\)
CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)
\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)
TỪ (1) ; (2) \(\Rightarrow CE>CB>CD\)
MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS
CHÚC BN HỌC TỐT!!!!!!