Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho tam giác ABC có \(\widehat{BAC}=90^0\)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(CB=\sqrt{225}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=108/15=7,2(cm)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(HB^2+7,2^2=9^2\)
=>\(HB^2=9^2-7,2^2=29,16\)
=>\(HB=\sqrt{29,16}=5,4\left(cm\right)\)
b: Xét ΔBMD vuông tại M và ΔBAC vuông tại A có
\(\widehat{MBD}\) chung
Do đó: ΔBMD~ΔBAC
d: Xét ΔBCD có
CA,DM là các đường cao
CA cắt DM tại E
Do đó: E là trực tâm của ΔBCD
=>BE\(\perp\)DC
A B C H M E D
a) Theo định lý Py-ta-go ta có:
BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225
\(\Leftrightarrow BC=\sqrt{225}=15\left(cm\right)\)
Xét \(\Delta HBA\) và \(\Delta ABC\) ta có:
\(\widehat{HBA}\)là góc chung (1)
\(\widehat{BHA}=\widehat{BAC}=90^o\left(gt\right)\left(2\right)\)
Từ (1), (2) \(\Rightarrow\Delta HBA\sim\Delta ABC\left(G-G\right)\left(3\right)\)
Từ (3) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{AH}{12}=\dfrac{9}{15}\)
\(\Leftrightarrow AH=\dfrac{12.9}{15}=\dfrac{36}{5}=7,2\left(cm\right)\)
Từ (3) \(\Rightarrow\dfrac{HB}{AB}=\dfrac{AH}{AC}\Leftrightarrow\dfrac{HB}{9}=\dfrac{7,2}{12}\)
\(\Leftrightarrow HB=\dfrac{9.7,2}{12}=\dfrac{27}{5}=5,4\left(cm\right)\)
b) Xét \(\Delta BMD\) và \(\Delta BAC\) ta có:
\(\widehat{MBA}\) là góc chung (4)
\(\widehat{BMD}=\widehat{BAC}=90^o\) (gt) (5)
Từ (4), (5) \(\Rightarrow\Delta BMD\sim\Delta BAC\left(G-G\right)\)
c) Ta có: AH \(\perp BC\left(gt\right)\)
\(DM\perp BC\left(gt\right)\)
\(\Rightarrow AH\)// DM
Ta lại có: M là trung điểm của BC (gt)
\(\Rightarrow\) MB = \(\dfrac{1}{2}BC=\dfrac{1}{2}.15=\dfrac{15}{2}=7,5\left(cm\right)\)
Ta có: HM = MB - HB = 7,5 - 5,4 = 2,1 (cm)
Vì AH // DM, theo định lý Ta-lét ta có:
\(\dfrac{HB}{HM}=\dfrac{AB}{AD}\Leftrightarrow\dfrac{5,4}{2,1}=\dfrac{9}{AD}\)
\(\Leftrightarrow AD=\dfrac{2,1.9}{5,4}=\dfrac{7}{2}=3,5\left(cm\right)\)
d) Ta có: CA là đường cao của \(\Delta BDC\)
Và DM cũng là đường cao của \(\Delta BDC\)
Mà E là giao điểm của 2 đường cao CA và DM
\(\Rightarrow\) BE cũng là đường cao của \(\Delta BDC\)
\(\Rightarrow BE\perp\)DC
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.