K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Cho tam giác ABC có \(\widehat{BAC}=90^0\)

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(CB=\sqrt{225}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=108/15=7,2(cm)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(HB^2+7,2^2=9^2\)

=>\(HB^2=9^2-7,2^2=29,16\)

=>\(HB=\sqrt{29,16}=5,4\left(cm\right)\)

b: Xét ΔBMD vuông tại M và ΔBAC vuông tại A có

\(\widehat{MBD}\) chung

Do đó: ΔBMD~ΔBAC

d: Xét ΔBCD có

CA,DM là các đường cao

CA cắt DM tại E

Do đó: E là trực tâm của ΔBCD
=>BE\(\perp\)DC

23 tháng 7 2018

A B C H M E D

a) Theo định lý Py-ta-go ta có:

BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225

\(\Leftrightarrow BC=\sqrt{225}=15\left(cm\right)\)

Xét \(\Delta HBA\)\(\Delta ABC\) ta có:

\(\widehat{HBA}\)là góc chung (1)

\(\widehat{BHA}=\widehat{BAC}=90^o\left(gt\right)\left(2\right)\)

Từ (1), (2) \(\Rightarrow\Delta HBA\sim\Delta ABC\left(G-G\right)\left(3\right)\)

Từ (3) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{AH}{12}=\dfrac{9}{15}\)

\(\Leftrightarrow AH=\dfrac{12.9}{15}=\dfrac{36}{5}=7,2\left(cm\right)\)

Từ (3) \(\Rightarrow\dfrac{HB}{AB}=\dfrac{AH}{AC}\Leftrightarrow\dfrac{HB}{9}=\dfrac{7,2}{12}\)

\(\Leftrightarrow HB=\dfrac{9.7,2}{12}=\dfrac{27}{5}=5,4\left(cm\right)\)

b) Xét \(\Delta BMD\)\(\Delta BAC\) ta có:

\(\widehat{MBA}\) là góc chung (4)

\(\widehat{BMD}=\widehat{BAC}=90^o\) (gt) (5)

Từ (4), (5) \(\Rightarrow\Delta BMD\sim\Delta BAC\left(G-G\right)\)

c) Ta có: AH \(\perp BC\left(gt\right)\)

\(DM\perp BC\left(gt\right)\)

\(\Rightarrow AH\)// DM

Ta lại có: M là trung điểm của BC (gt)

\(\Rightarrow\) MB = \(\dfrac{1}{2}BC=\dfrac{1}{2}.15=\dfrac{15}{2}=7,5\left(cm\right)\)

Ta có: HM = MB - HB = 7,5 - 5,4 = 2,1 (cm)

Vì AH // DM, theo định lý Ta-lét ta có:

\(\dfrac{HB}{HM}=\dfrac{AB}{AD}\Leftrightarrow\dfrac{5,4}{2,1}=\dfrac{9}{AD}\)

\(\Leftrightarrow AD=\dfrac{2,1.9}{5,4}=\dfrac{7}{2}=3,5\left(cm\right)\)

d) Ta có: CA là đường cao của \(\Delta BDC\)

Và DM cũng là đường cao của \(\Delta BDC\)

Mà E là giao điểm của 2 đường cao CA và DM

\(\Rightarrow\) BE cũng là đường cao của \(\Delta BDC\)

\(\Rightarrow BE\perp\)DC

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

23 tháng 4 2018

ai giúp với

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.