K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}=180^0-70^0-60^0=50^0\)

AM là phân giác của góc BAC

=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot70^0=35^0\)

Xét ΔAMC có \(\widehat{AMC}+\widehat{C}+\widehat{CAM}=180^0\)

=>\(\widehat{AMC}+35^0+60^0=180^0\)

=>\(\widehat{AMC}=85^0\)

Tham khảo


6 tháng 2 2017 lúc 14:19

Cho tam giác ABC cân tại A , góc A=20 độ , vẽ tam giác đều DBC , D nằm trong tam giác ABC . Tia phân giác của góc ABD cắt AC tại H . Chứng minh :

a) Tia AD là tia phân giác của góc BAC

b) AM = BC

Hình thì chắc bạn vẽ được nên tớ không vẽ nữa!!!leuleuleuleuleuleu

a, Đi chứng minh tam giác ABD=tam giác ACD (c.c.c) =>góc BAD=góc CAD=>AD là tia phân giác của góc BAC(đpcm)

nếu có j thắc mắc hỏi mình nha!!!leuleuleuleu

b, tớ sửa đề chứng minh AH=BC do không có điểm M.

Chứng minh

Xét tam giác ABC cân tại A ta có:

góc ABC=góc ACB=(180độ -20 độ):2=160 độ:2=80độ (theo tính chất của tam giác cân)

ta lại có: góc DBC=60 độ( theo tính chất của tam giác đều)

mà góc ABD=góc ABC-góc DBC=80độ -60 độ=20độ

mặt khác góc BAD=gócCAD=20độ/2=10độ và góc ABD=20độ/2=10độ (theo tính chất của tia phân giác)

Xét tam giác ABH và tam giác BAD ta có:

góc BAH=góc ABD (=20độ); AB: cạnh chung; góc ABH=góc BAD(=10độ)

Do đó tam giác ABH = tam giác BAD

=> AH=BD mà BD=BC( theo tính chất của tam giác đều) nên AH=BC (đpcm)

Có chỗ nào vướng mắc hỏi mình nha!! Chúc bạn học giỏi!!leuleuleuleu

7 tháng 2 2018

Ủa có M mà

15 tháng 3 2020

a) Xét tam giác ABC. Ta có:

Vì AD là tia phân giác của góc A nên:

\(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=40^{^o}\)

\(\widehat{ADB}=180^o-70^o-40^o=70^o\)

Vì \(\widehat{ADB}=\widehat{ABD}=70^o\)nên ABD là tam giác cân.

b)Vì \(\widehat{ADB}\)kề bù với \(\widehat{ADC}\)nên \(\widehat{ADC}=180^o-70^o=110^o\)

Do tam giác ACD là tam giác nên \(\widehat{ACD}=180^o-40^o-110^o=30^o\)

c) Đặt đỉnh ngoài của B là B1.

Ta có: \(\widehat{B_1}=180^o-70^o=110^o\)

_Hình tự vẽ_(kí hiệu < là góc)

a,

    ** theo bài ra ta có <C=90 độ,A=60

        Áp dụng định lí tổng 3 góc trong 1 tam giác có <A+<B+<C=180 độ

                                                                               =><B=180-90-60=30(độ)

                                                                    hay <ABC=30 độ        

     **Theo bài,có.BE là phân giác <A

       =><EAB=<EAC=1/2 <A=30 độ

b,

a: \(\widehat{BAC}=80^0\)

DD
20 tháng 7 2021

a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)

\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)

\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)

b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).

Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao

suy ra \(EK\)vuông góc với \(AD\).

13 tháng 12 2021

bạn ơi thế \(\widehat{HAB}\) tìm kiểu gì ạ vì góc đó chưa có số đo ạ :|