Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
6 tháng 2 2017 lúc 14:19
Cho tam giác ABC cân tại A , góc A=20 độ , vẽ tam giác đều DBC , D nằm trong tam giác ABC . Tia phân giác của góc ABD cắt AC tại H . Chứng minh :
a) Tia AD là tia phân giác của góc BAC
b) AM = BC
Hình thì chắc bạn vẽ được nên tớ không vẽ nữa!!!
a, Đi chứng minh tam giác ABD=tam giác ACD (c.c.c) =>góc BAD=góc CAD=>AD là tia phân giác của góc BAC(đpcm)
nếu có j thắc mắc hỏi mình nha!!!
b, tớ sửa đề chứng minh AH=BC do không có điểm M.
Chứng minh
Xét tam giác ABC cân tại A ta có:
góc ABC=góc ACB=(180độ -20 độ):2=160 độ:2=80độ (theo tính chất của tam giác cân)
ta lại có: góc DBC=60 độ( theo tính chất của tam giác đều)
mà góc ABD=góc ABC-góc DBC=80độ -60 độ=20độ
mặt khác góc BAD=gócCAD=20độ/2=10độ và góc ABD=20độ/2=10độ (theo tính chất của tia phân giác)
Xét tam giác ABH và tam giác BAD ta có:
góc BAH=góc ABD (=20độ); AB: cạnh chung; góc ABH=góc BAD(=10độ)
Do đó tam giác ABH = tam giác BAD
=> AH=BD mà BD=BC( theo tính chất của tam giác đều) nên AH=BC (đpcm)
Có chỗ nào vướng mắc hỏi mình nha!! Chúc bạn học giỏi!!
a) Xét tam giác ABC. Ta có:
Vì AD là tia phân giác của góc A nên:
\(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=40^{^o}\)
\(\widehat{ADB}=180^o-70^o-40^o=70^o\)
Vì \(\widehat{ADB}=\widehat{ABD}=70^o\)nên ABD là tam giác cân.
b)Vì \(\widehat{ADB}\)kề bù với \(\widehat{ADC}\)nên \(\widehat{ADC}=180^o-70^o=110^o\)
Do tam giác ACD là tam giác nên \(\widehat{ACD}=180^o-40^o-110^o=30^o\)
c) Đặt đỉnh ngoài của B là B1.
Ta có: \(\widehat{B_1}=180^o-70^o=110^o\)
_Hình tự vẽ_(kí hiệu < là góc)
a,
** theo bài ra ta có <C=90 độ,A=60
Áp dụng định lí tổng 3 góc trong 1 tam giác có <A+<B+<C=180 độ
=><B=180-90-60=30(độ)
hay <ABC=30 độ
**Theo bài,có.BE là phân giác <A
=><EAB=<EAC=1/2 <A=30 độ
b,
a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)
\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)
\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)
b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).
Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao
suy ra \(EK\)vuông góc với \(AD\).
bạn ơi thế \(\widehat{HAB}\) tìm kiểu gì ạ vì góc đó chưa có số đo ạ :|
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}=180^0-70^0-60^0=50^0\)
AM là phân giác của góc BAC
=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot70^0=35^0\)
Xét ΔAMC có \(\widehat{AMC}+\widehat{C}+\widehat{CAM}=180^0\)
=>\(\widehat{AMC}+35^0+60^0=180^0\)
=>\(\widehat{AMC}=85^0\)