K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

 

Được rồi, cách giải của bạn cũng đúng.

a. Chứng minh IK // DE và IK = DE

Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.

b. Chứng minh các tính chất yêu cầu

Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.

9 tháng 10 2020

câu 3. a) chứng minh IK =\(\frac{CD-AB}{2}\)

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
9 tháng 8 2019

ai giải câu này giùm mình vs

9 tháng 8 2019

nhanh nhanh vs aaaaaa