Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiện tai minh chi moi giai được cau a thoi. a, Áp dung định lý py-ta-go cho tam giác Vuông ABC: AB^2+AC^2=BC^2. 6^2+8^2=BC^2 36+64=100. vay can100=10cm
A B C H D
a/ Làm luôn cho hoàn chỉnh:
Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(100=BC^2\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b/ Xét tam giác ABC và tam giác AHB có:
\(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)
=> tam giác ABC ~ tam giác HBA (g.g)
c/ Từ chứng minh câu b
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)
* Tính \(BH\):
Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)
* Tính \(HC\):
\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)
d/ Xét tam giác ABD và tam giác ACD có:
\(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)
=> tam giác ABD ~ tam giác ACD (c.g.c)
Tới đây bí rồi, để nghĩ tiếp
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Chọn D