Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó của 3 cạnh đó lần lượt là a;b;c
Ta có: a/3 = b/4 = c/5 và c - a = 6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)
=> a = 3.3 = 9 ; b = 3.4 = 12 ; c = 5.3 = 15
Vậy số đó của 3 cạnh đó lần lượt là 9 cm ; 12 cm ; 15cm
gọi độ dài 3 cạnh của 1 tam giác tỉ lệ lần lượt vs a,b,c
Ta có:\(\frac{a}{3}\)=\(\frac{b}{4}\)=\(\frac{c}{5}\) và c-a=6
Ap dụng tính chát của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}\)=\(\frac{b}{4}\)=\(\frac{c}{4}\)=\(\frac{c-a}{5-3}\)=\(\frac{6}{2}\)
=3
suy ra:a=3.3=9
b=4.3=12
c=5.3=15
Gọi độ dài các cạnh của tam giác là a,b,c
Ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)
\(\frac{a}{3}=3\Rightarrow a=9;\frac{b}{4}=3\Rightarrow b=12;\frac{c}{5}=3\Rightarrow c=15\)
Vậy độ dài các cạnh của tam giác đố là 9m, 12m, 15m
Bài làm:
* Gọi độ dài các cạnh của tam giác đó lần lượt là x, y, z.
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x + y + z = 180 (chu vi của tam giác, định lý)
Theo tính chất dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\left(#\right)\)
(#) \(\Rightarrow\)x = 15 . 3 = 45
(#) \(\Rightarrow\)y = 15 . 4 = 60
(#) \(\Rightarrow\)z = 15 . 5 = 75
Vậy x = 45
y = 60
z = 75
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Gọi đọ dài 3 cạnh của tam giác là : a ; b ;c (cm)
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{8}{4}=2\)
a =6
b =10
c=14
Bài làm:
Gọi độ dài 3 cạnh của tam giác là: a, b, c (cm)
Vì Các cạnh của tam giác tỉ lệ với 3; 5; 7 và cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 8 cm (bài cho)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)(1) và c-a=8 (2)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{8}{4}=2\)( do có 2)
\(\Rightarrow\hept{\begin{cases}a=2\cdot3=6\\b=2\cdot5=10\\c=2\cdot7=14\end{cases}}\)
Vậy ...............
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=4\)
Do đó: a=12; b=16; c=20
Do các cạnh tỉ lệ vs 3,4,5 và cạnh lớn nhất trừ cạnh nhỏ nhất =6
\(=\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)
\(\Rightarrow\frac{a}{3}=3.3=9\)
\(\Rightarrow\frac{c}{5}=3.5=15\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{b}{4}=3.4=12\)
Vậy a,b,c là cách cạnh của tam giác
tíc mình nha
gọi 3 cạnh của tam giác đó là a,b,c
ta có : \(\frac{a}{3}+\frac{b}{4}+\frac{c}{5}\)và c- a = 6 cm
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-4}=\frac{6}{1}=6\)( vì c chiếm 5 phần nên là số lớn nhất)
\(\frac{a}{3}=6=>a=3.6=18\)
\(\frac{b}{4}=6=>b=4.6=24\)
\(\frac{c}{5}=6=>c=6.5=30\)
vậy chu vi hình tam giác là
18+ 24 +30= 72 cm