Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)
Chứng minh tương tự ta cũng có :
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng theo vế của 3 bất đẳng thức trên ta được :
\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Hay ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(P=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)
Cộng thêm giả thiết abc=1, suy ra dấu "=" xảy ra khi \(a=b=c=1\)
Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)
Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)
\(\Rightarrow a=2c\left(2a+c>0\right)\)
Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)
Vậy tam giác ABC là tam giác nửa đều
Lời giải:
Từ $a+b+c=2; \frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=2,5$
$\Rightarrow (a+b+c)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=5$
\(\Leftrightarrow \frac{a}{a+b}+\frac{a}{a+c}+\frac{a}{b+c}+\frac{b}{a+b}+\frac{b}{a+c}+\frac{b}{b+c}+\frac{c}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}=5\)
\(\Leftrightarrow \frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=5\)
\(\Leftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\)
Khi đó:
\(A=\frac{a-(b+c)}{b+c}+\frac{b-(c+a)}{c+a}+\frac{c-(a+b)}{a+b}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-3\)
\(=2-3=-1\)
Vậy $A=-1$
\(abc+a+c=b\Leftrightarrow ac+\frac{a}{b}+\frac{c}{b}=1\)
\(\Rightarrow\) tồn tại 1 tam giác nhọn ABC sao cho: \(\left\{{}\begin{matrix}a=tan\frac{A}{2}\\\frac{1}{b}=tan\frac{B}{2}\\c=tan\frac{C}{2}\end{matrix}\right.\)
Đặt vế trái của biểu thức là P, ta có:
\(P=\frac{2}{1+tan^2\frac{A}{2}}-\frac{2}{1+\frac{1}{tan^2\frac{B}{2}}}+\frac{3}{1+tan^2\frac{C}{2}}=2cos^2\frac{A}{2}-2sin^2\frac{B}{2}+3cos^2\frac{C}{2}\)
\(=cosA+cosB+3cos^2\frac{C}{2}=2cos\frac{A+B}{2}cos\frac{A-B}{2}+3cos^2\frac{C}{2}\)
\(=2sin\frac{C}{2}.cos\frac{A-B}{2}-3sin^2\frac{C}{2}-\frac{1}{3}cos^2\frac{A-B}{2}+\frac{1}{3}cos^2\frac{A-B}{2}+3\)
\(=-3\left(sin\frac{C}{2}-\frac{1}{3}cos\frac{A-B}{2}\right)^2+\frac{1}{3}cos^2\frac{A-B}{2}+3\le0+\frac{1}{3}+3=\frac{10}{3}\)
\(\left\{{}\begin{matrix}AO\perp OB\\AO\perp OC\end{matrix}\right.\) \(\Rightarrow AO\perp\left(ABC\right)\Rightarrow OA\perp BC\)
\(OH\perp\left(ABC\right)\Rightarrow OH\perp BC\)
\(\Rightarrow BC\perp\left(OAH\right)\)
b/ \(BC\perp\left(OAH\right)\Rightarrow BC\perp AH\Rightarrow AH\) là 1 đường cao trong tam giác ABC
Chứng minh tương tự câu a ta có\(AC\perp\left(OBH\right)\Rightarrow AC\perp BH\Rightarrow BH\) cùng là 1 đường cao
\(\Rightarrow H\) là trực tâm tam giác ABC
c/ Gọi M là giao điểm AH và BC \(\Rightarrow AM\perp BC\)
Áp dụng hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OM^2}\) (2)
\(BC\perp\left(OAH\right)\Rightarrow BC\perp OM\Rightarrow OM\) là đường cao ứng với cạnh huyền trong tam giác vuông OBC
Áp dụng hệ thức lượng: \(\frac{1}{OM^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\) (3)
(2);(3) \(\Rightarrow\) đpcm
d/ \(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{OA^2+OB^2+OA^2+OC^2-\left(OB^2+OC^2\right)}{2AB.AC}=\frac{OA^2}{AB.AC}>0\)
\(\Rightarrow A\) là góc nhọn
Tương tự ta có: \(cosB=\frac{OB^2}{AB.BC}>0\) ; \(cosC=\frac{OC^2}{AC.BC}>0\) nên B, C đều nhọn
Vậy ABC là tam giác nhọn
Nếu 3 cạnh a, b, c lập thành cấp số cộng thì ta có a + c = 2b
\(\Leftrightarrow\sin A+\sin C=2\sin B\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A-C}{2}=4\sin\frac{B}{2}\cos\frac{B}{2}\left(1\right)\)
Vì \(A+C=180^0-B\Rightarrow\frac{A+C}{2}=90^0-\frac{B}{2}\)
<=> \(\sin\frac{A+C}{2}=\sin\left(90^0-\frac{B}{2}\right)=\cos\frac{B}{2}\) hoặc \(\cos\frac{A+C}{2}=\cos\left(90^0-\frac{B}{2}\right)=\sin\frac{B}{2}\) (*)
Do đó (1) trở thành :
\(\Leftrightarrow\sin\frac{A+C}{2}\cos\frac{A-C}{2}=2\sin\frac{A+C}{2}\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\sin\frac{B}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}+\sin\frac{A}{2}\sin\frac{C}{2}=2\cos\frac{A}{2}\cos\frac{C}{2}-2\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}=3\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cot\frac{A}{2}\cot\frac{C}{2}=3\) => Điều phải chứng minh
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
ta có : A+C+B=\(_{\pi}\) \(\Rightarrow\) A+2A+4A=\(\pi\) \(\Rightarrow\) A=\(\frac{\pi}{7}\) ,B=\(\frac{2\pi}{7}\),C=\(\frac{4\pi}{7}\)
Do đó : \(\frac{1}{a}=\frac{1}{b}+\frac{1}{c}\Rightarrow\) BC=AB+AC
\(\Leftrightarrow\sin\frac{2\pi}{7}\sin\frac{4\pi}{7}=\sin\frac{\pi}{7}\sin\frac{2\pi}{7}+\sin\frac{\pi}{7}\sin\frac{4\pi}{7}\)
\(\Leftrightarrow\cos\frac{2\pi}{7}-\cos\frac{6\pi}{7}=\cos\frac{\pi}{7}-\cos\frac{3\pi}{7}+\cos\frac{3\pi}{7}-\cos\frac{5\pi}{7}\)
\(\Leftrightarrow\cos\frac{2\pi}{7}-\cos\frac{6\pi}{7}=\cos\frac{\pi}{7}-\cos\frac{5\pi}{7}\) (điều hiển nhiên)