K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có

N là trung điểm của AB

M là trung điểm của AC

DO đó NM là đường trung bình

=>NM//BC và NM=BC/2(1)

Xét ΔGBC có 

I là trung điểm của BG

K là trung điểm của CG

Do đó: IK là đường trung bình

=>IK//BC và IK=BC/2(2)

Từ(1) và (2) suy ra MN=IK và MN=IK

Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình

=>NM//BC và NM=BC/2(1)

Xét ΔGBC có

I là trung điểm của BG

K là trung điểm của CG

Do đó: IK là đường trung bình

=>IK//BC và IK=BC/2(2)

Từ (1) và (2) suy ra MN//IK và MN=IK

13 tháng 7 2017

A B C M N I K G

Cách 1: Sử dụng tính chất đường trung bình:

N là trung điểm của AB và M là trung điểm của AC => MN là đường trung bình của \(\Delta\)ABC.

=> MN//BC và MN=1/2BC (1)

I là trung điểm BG và K là trung điểm CG => IK là đường trung bình của \(\Delta\)BGC.

=> IK//BC và IK=1/2BC (2)

Từ (1); (2) => MN//IK và MN=IK (đpcm)

Cách 2: Chứng minh 2 tam giác bằng nhau:

G là trọng tâm của \(\Delta\)ABC => BG=2GM và CG=2GN.

Mả I là trung điểm của BG => BI=GI=GM

K là trung điểm của CG => CK=GK=GN

Xét \(\Delta\)IGK và \(\Delta\)MGN:

GI=GM

^IGK=^MGN       => \(\Delta\)IGK=\(\Delta\)MGN (c.g.c) 

GK=GN

=> MN=IK (2 cạnh tương ứng) và ^GIK=^GMN => MN//IK (So le trong)

Cách 3: Sử dụng tính chất đoạn chắn đảo:

Ta có: \(\Delta\)NIG=\(\Delta\)KMG (c.g.c) => ^NIG=^KMG (So le trong) => NI//KM.

Mả NI=KM (2 cạnh tương ứng) => MN//IK và MN=IK (đpcm)

13 tháng 7 2017

xét tam giác BCG có I, K là trung điểm của BG, CG (gt)

=> IK là đường trung bình của tam giác

=> IK//BC  và IK=1/2 BC (1)

xét tam giác ABC có M, N là trung điểm của AB, AC (đường trung tuyến)

=> MN là đường trung bình của tam giác

=> MN//BC và MN=1/2 BC (2)

từ (1) và (2) => MN//IK//BC và MN=IK=1/2BC 

Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

E là trung điểm của GB(gt)

F là trung điểm của GC(gt)

Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

31 tháng 10 2021

a: Xét ΔABC có

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Do đó: MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BMNC là hình thang cân

31 tháng 10 2021

Mk cảm ơn nhiều nhưng còn các câu còn lại giúp mk vs ạ

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

Xét tứ giác BNMC có NM//BC

nên BNMC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BNMC là hình thang cân