Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
1: Xét ΔBCA có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBCA
Suy ra: \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau tại G gọi I và K theo thứ tự là trung điểm của GB GC
a tứ giác BIKC lF hình gì ? Vì sao?
b tú giác EDKI là hình gì ? Vì sao?
* Trong ΔABC, ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của ΔABC
⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)
* Trong ΔGBC, ta có:
I là trung điểm của BG (gt)
K là trúng điểm của CG (gt)
Nên IK là đường trung bình của ΔGBC⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)
Từ (l) và (2) suy ra: IK // DE, IK = DE.
a) xét tg BGC có : BI=IG (gt) ; GK=KC (gt) => IK// BC => IK là đtb tg BGC
chỉ có thể giải v thui thông cảm nha
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
a,Xét tam giác GBC có: GI=BI(I là trung điểm của GB)
GK=CK(K là trung điểm của GC)
=>IK là đường trung bình của tam giác GBC
b, Vì IK là đường trung bình của tam giác GBC
=> \(\hept{\begin{cases}IK=\frac{1}{2}BC\\IKsongsongBC\end{cases}}\)(1)
Vì BD là đường trung tuyến kẻ từ B của tam giác ABC =>AD=CD
Vì CE là đường trung tuyến kẻ từ C của tam giác ABC =>AE=BE
Xét tam giác ABC có: AD=CD
AE=BE
=>DE là đường trung bình của tam giác ABC
=>\(\hept{\begin{cases}DE=\frac{1}{2}BC\\DEsongsongBC\end{cases}}\)(2)
Từ (1) và (2)=>\(\hept{\begin{cases}IK=ED\\IKsongsongED\end{cases}}\)
a) Xét tam giác GBC có:
I là trung điểm GB, K là trung điểm GC => IK là đường trung bình tam giác GBC(đpcm)
b) Xét tam giác ABC có:
BD là trung tuyến => D là trung điểm AC
CE là trung tuyến =>E là trung điểm AB
==>> ED là đường trung bình tam giác ABC => ED= 1/2 BC (1) và ED//BC(2)
Ta có: IK là đường trung bình tam giác GBC => IK= 1/2 BC (3) và IK//BC (4)
Từ (1) và (3) => ED=IK (đpcm)
Từ (2) và (4) => ED//IK (đpcm)
K cho mk nha!!!!!
A B C D E I K G
Xét \(\Delta ABC\) ta có:
\(E\) là trung điểm của AB
\(D\) là trung điểm của AC
\(\Rightarrow\) ED là đương trung bình của \(\Delta ABC\)
\(\Rightarrow ED=\dfrac{1}{2}BC=\dfrac{1}{2}.4=2cm\)
b.
Theo giả thiết ta có:
ED và IK lần lượt là đường trung bình của tam giác ABC và tam giác GBC.
\(\Rightarrow\left\{{}\begin{matrix}DE//BC\\IK//BC\end{matrix}\right.\) \(\Rightarrow ED//IK\)
c.
Xét từ giác EDKI ta có:
\(\left\{{}\begin{matrix}ED//IK\\ED=IK=\dfrac{1}{2}BC=2cm\end{matrix}\right.\)
Tứ giác EDKI có 1 cặp cạnh đối song song và bằng nhau, do đó từ giác EDKI là hình bình hành.