Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4x}{\sqrt{7x-6}}+\frac{4\sqrt{7x-6}}{x}=8\) Đặt \(\frac{x}{\sqrt{7x-6}}=t\left(ĐK:t\ge0\right)\Leftrightarrow\frac{1}{t}=\frac{\sqrt{7x-6}}{x}\\ Pt\Leftrightarrow4t+\frac{4}{t}=8\Leftrightarrow4t^2+4-8t=0\Leftrightarrow t=1\left(tm\right)\)
Với
\(t=1\Leftrightarrow\frac{x}{\sqrt{7x-6}}=1\Leftrightarrow x=\sqrt{7x-6}\Leftrightarrow x^2=7x-6\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=1\end{array}\right.\)
Vậy \(s=\left\{1;6\right\}\)
Gọi AH,BD,CE là 3 đường cao của ΔABC
Vì ΔABC cân tại A(gt),có AH là đường cao
=>AH cũng là đường trung tuyến
=>BH=CH=\(\frac{1}{2}\)BC=\(\frac{1}{2}\cdot18=9\)
Xét ΔABH vuông tại H
=>\(AB^2=AH^2+BH^2\)(theo định lý pytago)
=>\(AH^2=AB^2-BH^2=15^2-9^2=144\)
=>AH=12
Xét ΔAHC và ΔBDC có:
\(\widehat{AHC}=\widehat{BDC}=90\)
\(\widehat{C}\) : góc chung
=>ΔAHC ~ ΔBDC (g.g)
=>\(\frac{HC}{DC}=\frac{AC}{BC}\)
hay \(\frac{9}{DC}=\frac{15}{18}\)
=>\(DC=\frac{9\cdot18}{15}=10,8\)
Xét ΔBDC vuông tại D(gt)
=>\(BC^2=DC^2+BD^2\) (theo định lý pytagp)
=>\(BD^2=BC^2-DC^2=18^2-10,8^2=207,36\)
=>BD= 14,4
Xét ΔBCE và ΔCBD có:
\(\widehat{BEC}=\widehat{CDB}=90\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) (gt)
=>ΔBCE=ΔCBD(cạnh huyền-góc nhọn)
=>CE=BD=14,4
a) Ta có AMN=MAN=ANM=90=>tứ giác AMHN là hình chữ nhật
=>AMN=HAM
Mà HAM=ACB( cùng cộng với ABC=90độ)
=>AMN=ACB
=>tam giác AMN ~ tam giác ACB
=>........................