Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H
Xét ∆ABE và ∆ACF có:
\(\widehat{A}\left(chung\right)\)
\(\widehat{AEB}=\widehat{AFC}\left(=90^0\right)\)
\(\Rightarrow\)∆ABE ~ ∆ACF (g-g)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
Xét ∆AEF và ∆ABC có:
\(\frac{AE}{AB}=\frac{AF}{AC}\left(cmt\right)\)
\(\widehat{A}\left(chung\right)\)\
\(\Rightarrow\)∆AEF ~ ∆ABC (đpcm)
Ta có: \(\tan B=\frac{ÁD}{DB};\tan C=\frac{AD}{DC}\)
Xét ∆ADC và ∆BDH có:
\(\widehat{HBD}=\widehat{CAD}\)( cùng phụ với \(\widehat{C}\))
\(\widehat{ADC}=\widehat{BDH}\left(=90^0\right)\)
\(\Rightarrow\)∆ADC ~ ∆ BDH (g-g)
\(\Rightarrow\frac{AD}{DC}=\frac{BD}{DH}\)
\(\Rightarrow\tan B\cdot\tan C=\frac{AD}{DB}\cdot\frac{AD}{DC}=\frac{AD}{DB}\cdot\frac{BD}{DH}=\frac{AD}{DH}\)(đpcm)
Bài 1:
A B C H F D E K L
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.