K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

D A E B C

Ta có : \(\widehat{DAB}=\widehat{CAE}=90^0\Rightarrow\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)

hay \(\widehat{DAC}=\widehat{EAB}\)

Xét \(\Delta ADC\)và \(\Delta ABE\)có :

AD = AB

\(\widehat{DAC}=\widehat{EAB}\)

AC = AE

\(\Rightarrow\Delta ADC=\Delta ABE\left(c.g.c\right)\Rightarrow DC=BE\)

Vì tam giác ADC = tam giác ABE nên \(\widehat{AEB}=\widehat{ACD}\)

mà \(\widehat{AKE}=\widehat{BKC}\left(doi-dinh\right),\widehat{AKE}+\widehat{AEB}=90^0\)

\(\Rightarrow\widehat{BKC}+\widehat{AEB}=90^0\) hay góc \(\widehat{BKC}+\widehat{ACD}=90^0\)

\(\Rightarrow DC\perp BE\)

31 tháng 10 2020

chữ K ở đâu vậy

18 tháng 8 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

∠DAC = ∠DAB + ∠BAC = 90o + ∠BAC

∠BAE = ∠BAC + ∠CAE = ∠BAC + 90o

⇒ ∠DAC = ∠BAE

Xét ΔABE và ΔADC, ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

19 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K

Ta có: ΔABE = ΔADC (cmt)

⇒ ∠ABE = ∠ADC (hai góc t.ư)

hay ∠HBK = ∠ADH

+ ΔADH và ΔBKH đều có tổng ba góc trong mỗi tam giác bằng 180o nên có:

∠ADH + ∠DAH + ∠AHD = ∠BKH + ∠KHB + ∠HBK

Mà ∠AHD = ∠BHK (hai góc đối đỉnh)

∠ADH = ∠HBK (chứng minh trên)

Suy ra ∠DAH = ∠HKB

Mà ∠DAH = 90o nên ∠HKB = 90o

⇒ DC ⊥ BE (điều phải chứng minh)

10 tháng 3 2020

Bạn tham khảo câu này mình làm rồi nha :

https://olm.vn/hoi-dap/detail/185064677791.html

Mình làm rồi nhé cả hình cả lời giải nha :>

8 tháng 12 2015

A B C D E K H

2 tháng 2 2016

sao k ai trả lời thế tui cũng gặp bài này

 

9 tháng 1 2022

Ta có: \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC;}\widehat{BAE}=\widehat{EAC}+\widehat{BAC}.\)

Mà \(\widehat{DAB}=\widehat{EAC}\left(90^o\right);\widehat{BAC}chung.\)

\(\Rightarrow\) \(\widehat{DAC}=\widehat{BAE}.\)

Xét tam giác DAC và tam giác BAE:

+ AD = AB (gt).

+ AC = AE (gt).

\(\widehat{DAC}=\widehat{BAE}\left(cmt\right).\)

\(\Rightarrow\) Tam giác DAC = Tam giác BAE (c - g - c).

\(\Rightarrow\) DC = BE (2 cạnh tương ứng).