K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔIMB vuông tại M và ΔINC vuông tại N có

\(\widehat{MIB}=\widehat{NIC}\)(hai góc đối đỉnh)

Do đó: ΔIMB~ΔINC

=>\(\dfrac{IM}{IN}=\dfrac{IB}{IC}\)

=>\(IM\cdot IC=IB\cdot IN\)

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

18 tháng 4 2021

XIn các bạn giải giùm mình 

Mình cần gắp lắm ạ

 

a: góc BEC=góc BDC=90 độ

=>BEDC nộitiếp

Tâm I là trung điểm của BC

b: IE=ID

mà IK là trung tuyến

nên IK vuông góc ED

Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc ADE

=>DE//Ax

=>ED vuông góc OA

=>IK//OA

a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BCEF là tứ giác nội tiếp đường tròn đường kính BC

Kẻ tiếp tuyến Ax của (O)

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)

nên \(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔADB vuông tại D và ΔACK vuông tại C có

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB~ΔACK

=>\(\dfrac{AD}{AC}=\dfrac{AB}{AK}\)

=>\(AD\cdot AK=AB\cdot AC\)

6 tháng 3 2022

a, Xét (O) có 

^BMC = ^BNC = 900 ( góc nt chắn nửa đường tròn ) 

=> ^AMD = ^AND = 900

Xét tứ giác AMDN có 

^AMD + ^AND = 1800

mà 2 góc này đối 

Vậy tứ giác AMDN nt 1 đương tròn 

b, Ta có ^MAD = ^MND ( góc nt chắn cung MD của tứ giác AMDN ) 

mà ^MNB = ^MCB ( góc nt chắn cung MB ) 

Xét tứ giác OMC có OM = OC = R 

Vậy tam giác OMC cân tại O 

=> ^OMC = ^OCM 

=> ^OMC = ^MAD 

 

 

a: Xét \(\left(O\right)\) có

\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{CNB}=90^0\)

hay CM\(\perp\)AB

Xét \(\left(O\right)\) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

hay BN\(\perp\)AC

b: Xét ΔABC có

BN là đường cao ứng với cạnh AC

CM là đường cao ứng với cạnh AB

BN cắt CM tại H

Do đó: AH\(\perp\)BC