Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEC=góc BDC=90 độ
=>BEDC nộitiếp
Tâm I là trung điểm của BC
b: IE=ID
mà IK là trung tuyến
nên IK vuông góc ED
Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>DE//Ax
=>ED vuông góc OA
=>IK//OA
a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BCEF là tứ giác nội tiếp đường tròn đường kính BC
Kẻ tiếp tuyến Ax của (O)
=>Ax\(\perp\)OA tại A
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)
nên \(\widehat{xAC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//FE
ta có: Ax//FE
OA\(\perp\)Ax
Do đó: OA\(\perp\)FE
b: Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB~ΔACK
=>\(\dfrac{AD}{AC}=\dfrac{AB}{AK}\)
=>\(AD\cdot AK=AB\cdot AC\)
a, Xét (O) có
^BMC = ^BNC = 900 ( góc nt chắn nửa đường tròn )
=> ^AMD = ^AND = 900
Xét tứ giác AMDN có
^AMD + ^AND = 1800
mà 2 góc này đối
Vậy tứ giác AMDN nt 1 đương tròn
b, Ta có ^MAD = ^MND ( góc nt chắn cung MD của tứ giác AMDN )
mà ^MNB = ^MCB ( góc nt chắn cung MB )
Xét tứ giác OMC có OM = OC = R
Vậy tam giác OMC cân tại O
=> ^OMC = ^OCM
=> ^OMC = ^MAD
a: Xét \(\left(O\right)\) có
\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{CNB}=90^0\)
hay CM\(\perp\)AB
Xét \(\left(O\right)\) có
\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BNC}=90^0\)
hay BN\(\perp\)AC
b: Xét ΔABC có
BN là đường cao ứng với cạnh AC
CM là đường cao ứng với cạnh AB
BN cắt CM tại H
Do đó: AH\(\perp\)BC
Xét ΔIMB vuông tại M và ΔINC vuông tại N có
\(\widehat{MIB}=\widehat{NIC}\)(hai góc đối đỉnh)
Do đó: ΔIMB~ΔINC
=>\(\dfrac{IM}{IN}=\dfrac{IB}{IC}\)
=>\(IM\cdot IC=IB\cdot IN\)