Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí sin trong tam giác ta có:
a sin A = 2 R ⇒ R = a 2 sin A = 6 2. sin 60 0 = 2 3
Chọn B.
Xét tam giác ABC có đường cao BH:
cos ABC = \(\dfrac{7^2+15^2-13^2}{2\cdot7\cdot15}\) = \(\dfrac{1}{2}\) \(\Rightarrow\) \(\widehat{ABC}=60^o\)
\(p=\dfrac{13+7+15}{2}=17,5\) (cm)
Hê-rông: \(S=\sqrt{17,5\cdot\left(17,5-13\right)\cdot\left(17,5-7\right)\cdot\left(17,5-15\right)}\approx45,5\) (cm2)
\(S=\dfrac{abc}{4R}\) \(\Rightarrow\) \(R=\dfrac{abc}{4S}\approx\dfrac{13\cdot7\cdot15}{4\cdot45,5}=7,5\) (cm)
\(S=\dfrac{1}{2}BH\cdot AC\) \(\Rightarrow\) \(BH=\dfrac{2S}{AC}\approx\dfrac{2\cdot45,5}{13}=7\) (cm)
Chúc bn học tốt!
Ta có: A B 2 + A C 2 = B C 2 ( 3 2 + 4 2 = 5 2 )
Suy ra, tam giác vuông tại A.
Diện tích tam giác ABC là: S = 1 2 . A B . A C = 6
Nửa chu vi tam giác: p = 3 + 4 + 5 2 = 6
Bán kính đường tròn nội tiếp của tam giác là: r = S p = 1
ĐÁP ÁN A
a: \(\overrightarrow{AB}=\left(-3;4\right)\)
\(\overrightarrow{AC}=\left(8;6\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A
c: Tọa độ trọng tâm G là:
\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)
Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)
=>\(2R=\dfrac{6}{sin150}=12\)
=>R=6(cm)
=>Chọn C