Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do Cx //AB mà IE vg vs AB(gt) nên IE vg vs CD (vì D thuộc Cx)
xét tg BME vầ tg CMI có: BEM=CIM=90 ; BM=CM(vì AM là đg trung tuyến) ; BME=CMI(đ.đ)
=>tg BME=tg CMI(ch-gn)=>ME=MI(2 cạnh t/ ư)=> M là t/đ của EI
b)do EI vg vs Dc(cmt) và I lf t/đ của DC(gt)=> EI là đg trung trực của DC,mà M thuộc EI nên MD=MC(ĐL)=.tg MCD cân tại M=>MDC=MCD(1)
mặt khác: EBM=ICM(vì tg BEM=tg CIM)(2)
từ (1), (2)=>EBM=MDC, mà EPM=MDC(vì CD//AB) nên EBM=EPM=>tg BMP cân tại M
c)xét tg BEID có: BE=DI(cùng =CI) và BE//DI(vì AB//CD, E thuộc AB, I thuộc DC)
=>tg BEID là hbh=>EI//BD. mà DC vg vs EI(cmt) nên DC vg vs BD
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD