K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

A B C H M N

Áp dụng hệ thức lượng ta có:

\(AB.AM=AH^2\)

\(AC.AN=AH^2\)

suy ra:  \(AB.AM=AC.AN\) (đpcm)

20 tháng 9 2015

Xét tứ giác AMHN có góc ANM = góc AHM (1) (2 góc trong tứ giác nội tiếp cùng nhìn xuống cạnh AM)

Mà góc AHM = góc B = 90o – BHM (2)

(1)(2) => góc ANM = góc B

Xét tam giác ANM và tam giác ABC có:

Góc A chung

Góc ANM = góc B

ð       tam giác ANM đồng dạng tam giác ABC (g – g)

ð       AN/AB = AM/AC

ð       AN.AC = AB.AM

27 tháng 6 2018

+Xét tứ giác ANHM:

AMH^ = 90o (HM _|_ AB)

ANH^ = 90o (HN _|_ AC)

=> AMH^ + ANH^ = 180o => tứ giác ANHM nội tiếp

+ Ta có: AMN^ = AHN^ (cùng chắn cung AN của (ANHM))

AHN^ = ACB^ (cùng phụ HNC^)

=> AMN^ = ACB^

+Xét tam giác AMN và tam giác ACB:

A^ chung (gt);

AMN^ = ACB^ (cmt)

=> tam giác AMN đồng dạng tam giác ACB (g.g)

\(\Rightarrow\dfrac{AM}{AN}=\dfrac{AC}{AB}\Rightarrow AB\cdot AM=AN\cdot AC\left(đpcm\right)\)

a

Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90

HMABAMH^=90∘⇒HM⊥AB.

ΔAHBΔAHB vuông tại HH có HMAB

AH2=AB.AMHM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.ANAH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.

B

Theo câu a ta có AB.AM=AC.AN

AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.

ΔAMNΔACB⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{AMN}\)=\(\widehat{ACB}\)

c.

Tam giác ABCABC vuông tại AA có II là trung điểm của BC

IA=IB=ICBC⇒IA=IB=IC.

ΔIAC⇒ΔIAC cân tại I

\(\widehat{IAC}\)= \(\widehat{ICA}\)

Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
 

\(\widehat{IAC}\)= \(\widehat{AMN}\)

Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90

\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90

\(\Rightarrow\widehat{ADM}\)
=90
BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘
.

Ta chứng minh ΔABCΔABC vuông tại AA có AHBC

AH2=BH.CHAH⊥BC⇒AH2=BH.CH.

Mà BC=BH+CH

1AD=BH+CHBH.CH

1AD=1HB+1HC.

\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????

31 tháng 7 2021

a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)

c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)

 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAFE vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)

21 tháng 10 2021

a, BC=BH+HC=8BC=BH+HC=8

Áp dụng HTL: 

⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)

b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)

Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tan⁡AKB^=ABAK=423=233≈tan⁡490

⇒ˆAKB≈490