Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tg AOB và tg COE
AB = ce
oa = oc ( thuộc đường trung trực AC )
ob = oe ( .................................... Be )
suy ra = nhau
b, vì hai tg trên =
-> góc oab = góc oce 1
tg aoc cân tại o -> góc oac = góc oce 2
từ 1 , 2 suy ra góc oab = góc oac
suy ra đpcm
A B C E F O
GT | △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm BF và BC tỉ lệ 3 và 5 BE ∩ CF = {O} . Nối AO với EF |
KL | a, △ABC cân b, BC = ? c, AO là trung trực EF |
Bài làm:
a, Xét △BFC vuông tại F và △CEB vuông tại E
Có: BC là cạnh chung
CF = BE (gt)
=> △BFC = △CEB (ch-cgv)
=> FBC = ECB (2 góc tương ứng)
Xét △ABC có: ABC = ACB (cmt)
=> △ABC cân tại A
b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)
Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)
Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)
\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)
\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)
\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)
c, Vì △ABC cân tại A => AB = AC
Ta có: AB = AF + FB
BC = AE + EC
Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)
=> AF = AE
=> A thuộc đường trung trực của FE (1)
Ta có: DBC = FBE + EBC
ECB = ECF + FCB
Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)
=> FBE = ECF
Xét △BFO vuông tại F và △CEO vuông tại E
Có: FBO = ECO (cmt)
BF = CE (△BFC = △CEB)
=> △BFO = △CEO (cgv-gnk)
=> FO = OE (2 cạnh tương ứng)
=> O thuộc đường trung trực của FE (2)
Từ (1) và (2) => đường thẳng AO là trung trực của EF.
a: Xét ΔAOB và ΔCOE có
OB=OE
OA=OC
AB=CE
=>ΔAOB=ΔCOE
b: góc OAB=góc OCE
=>góc OAB=góc OAC
=>AO là phân giác của góc BAC
Vì các đường trung trực của `\Delta ABC` cắt nhau tại điểm O
`->` `\text {AO}` là đường trung trực thứ `3` của `\Delta`
Xét các đáp án trên `-> D.`