Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A N M D E F G L P Q T H K I I J J 1 2 1 2
a) Xét đường tròn (J1) có: ^HJ1D = 2.^HMD (^HMD=1/2.Sđ(HD ). Tương tự: ^KJ2D = 2.^KND
Dễ thấy tứ giác MEFN nội tiếp (Do ^MEN = ^MFN) => ^DMH = ^DNK (2 góc nội tiếp cùng chắn cung EF)
Do đó: ^HJ1D = ^KJ2D. Mà các tam giác HJ1D và KJ2D cân tại J1 và J2 => ^J2DK + 1/2.^HJ1D = 900
Hay ^J2DK + ^HMD = 900 => J2D vuông góc EM. Có J1H vuông góc EM => J2D // J1H
=> ^J1DJ2 = ^HJ1D (So le trong) => ^HDK = ^J1DJ2 + ^J1DH + ^J2DK = ^HJ1D + ^J1DH + ^J1HD = 1800
=> 3 điểm K,H,D thẳng hàng. Lại có: ^AHD = 1/2.Sđ(HD; ^AKD = 1/2.Sđ(KD => ^AHD = ^AKD
Từ đó: ^AHK = ^AKH => \(\Delta\)HAK cân tại A => AH=AK
Gọi giao điểm của tia AD với (I1) và (J1) lần lượt là P' và Q'. Ta sẽ chứng minh P' trùng P; Q' trùng Q.
Theo hệ thức lượng trong đường tròn: AH2 = AD.AQ' => AK2 = AD.AQ' => \(\Delta\)ADK ~ \(\Delta\)AKQ' (c.g.c)
=> ^AKD = ^AQ'K = 1/2.Sđ(DK => Điểm Q' nằm trên (J2) => Q' trùng Q (1)
Tương tự: AE.AM = AD.AP'; AE.AM = AF.AN => AF.AN = AD.AP' => \(\Delta\)ADF ~ \(\Delta\)ANP' (c.g.c)
=> ^ADF = ^ANP' => Tứ giác DFNP' nột tiếp => Điểm P' thuộc (DFN) hay P' thuộc (I2) => P' trùng P (2)
Từ (1) và (2) => Tia AD đi qua 2 điểm P và Q hay 3 điểm D,P,Q thẳng hàng (đpcm).
b) Định trên đoạn thẳng EF một điểm T thỏa mãn \(\frac{ET}{FT}=\frac{HD}{KD}\)
Ta thấy ^GEA = ^GFA => ^GEH = ^GFK. Kết hợp với ^GHE = ^GKF => \(\Delta\)GEH ~ \(\Delta\)GFK (g.g)
=> \(\frac{GE}{GH}=\frac{GF}{GK}\). Lại có: ^EGF = ^EAF = ^HGK (Các góc nội tiếp) => \(\Delta\)GEF ~ \(\Delta\)GHK (c.g.c)
Do T và D định trên các cạnh EF, HK các tỉ số tương ứng bằng nhau nên \(\Delta\)GTF ~ \(\Delta\)GDK (c.g.c)
=> \(\frac{GT}{GD}=\frac{GF}{GK}\). Nhưng ^TGD = ^FGK (=^TGF - ^TGK) nên \(\Delta\)GTD ~ \(\Delta\)GFK (c.g.c)
=> ^GDT = ^GKF. Mà ^GKF = ^GQD => ^GDT = ^GQD = 1/2.Sđ(GD => DT là tia tiếp tuyến của đường tròn (DGQ) (3)
Mặt khác:^GLE = ^GFE = ^GKH = ^GQH. Dễ thấy: \(\Delta\)LEF ~ \(\Delta\)QHK. Từ \(\frac{ET}{FT}=\frac{HD}{KD}\)=> \(\Delta\)ELT ~ \(\Delta\)HQD
=> ^ELT = ^HQD => ^ELT - ^GLE = ^HQD - ^GQH => ^GLT = ^GQD. Mà ^GQD = ^GDT (cmt) nên ^GLT = ^GDT
Từ đó có: Tứ giác GDLT nội tiếp hay điểm T nằm trên đường tròn (DLG) (4)
Qua (3) và (4) suy ra: Tiếp tuyến tại D của đường tròn (DGQ) cắt EF tại điểm T nằm trên đường tròn (DLG) (đpcm).
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) ta có : O là trung điểm của AH
xét đường tròn tâm O,có:E thuộc đường tròn
→tam giác A,E,H vuông tại E (t/c đường tròn)
F thược đường tròn
→tam giác A,F,H vuông tại F (t/c đường tròn)
Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)
Ê = F =90 (Δ vuông )
→tứ giác A,E,H,F là hình chữ nhật