K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

21 tháng 11 2017

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

22 tháng 2 2018

B C M E F

a,Xét \(\Delta ABM\)\(\Delta ACM\)có:

AB = AC (gt), MB = MC (gt), AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)(đpcm)

b,Théo câu a, \(\Delta ABM=\Delta ACM\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{AMB}=90^o\)=> AM vuông góc với BC (đpcm)

c,Xét \(\Delta EBC\)\(\Delta FCB\)có:

BE = CF (gt), \(\widehat{EBC}=\widehat{FCB}\left(gt\right)\),BC chung

=> \(\Delta EBC=\Delta FCB\left(c-g-c\right)\)(đpcm)

d, \(gt\Rightarrow AE=AF\Rightarrow\Delta AEF\)cân tại A\(\Rightarrow\widehat{AEF}=180^o-\widehat{\frac{A}{2}}\)

\(gt:AB=AC\Rightarrow\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=180^o-\widehat{\frac{A}{2}}\)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)mà 2 góc này nằm ở vị trí đồng vị \(\Rightarrow\)EF//BC (đpcm)

28 tháng 2 2021

a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)

b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC 

c) Tam giác EBC và FCB có 

EB = FC

\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)

BC chung

=> tam giác EBC = tam giác FCB (c.g.c)

d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)

=> tam giác IBC cân tại I => IB = IC

Xét tam giác AIB và AIC có

AI chung

AB =AC (gt)

IB=IC

=> tam giác AIB = AIC (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)

=> AI là tia phân giác của \(\widehat{BAC}\) (1)

Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac

=> AM là tia pgiac của \(\widehat{BAC}\) (2)

từ 1 và 2 => A,I,M thẳng hàng

e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)

Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)

Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB

 

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

29 tháng 11 2015

tu ve hinh nhe

a) xet TG abm va TG:  ACMco

AB=AC (gt)

BM=CM

AMla canh chung 

==> TG ABM = TG ACM (c-c-c)

b)có _________________

M1=M2 (hai goc tuong ung)

M1+M2 =180 DO(KB)

==> M1=M2=180/2= 90 đo

===> AMvuong goc BC

c)phan c tuong tu

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0