K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

10 tháng 5 2018

cái này k là toán thì là j

1 tháng 5 2020

100-79=

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

23 tháng 2 2021

Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc

Mk nghĩ bn nên xem lại đề bài.

22 tháng 4 2020

A B C I M K

a, Xét tam giác vuông MHC có :

\(\widehat{CMH}+\widehat{HCM}=90^o\)

Xét tam giác vuông ABC có:

\(\widehat{HIB}+\widehat{HCM}=90^o\)

\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)

Xét 2 tam giác : KHM và IHB

MH = HB ( gt )

\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)

\(\widehat{MKH}=\widehat{HIB}=90^o\)

\(\Rightarrow\Delta KHM=\Delta IHB\)

b, \(\Rightarrow HK=HI\)

Xét 2 tam giác : KHA và IHA

KM = IH ( cm a )

AN chung

\(\widehat{HKA}=\widehat{AIM}=90^o\)

\(\Rightarrow\Delta KHA=\Delta IHA\)

\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)

Vậy : AH là tia phân giác góc BAC

22 tháng 4 2020

a, xet △ vuong mhc co  ∠cmh + ∠hcm = 90 do  xet △ vuong abc co  ∠hbi + ∠hcm = 90 do  suy ra ∠cmh = ∠hbi  xet △ BHI va △ MHK co  ∠CMH = ∠HBI [c/m tr]  HM = BH [gt]  ∠BIH = ∠MKH [=90 do]  ➩ △ BHI = △ MHK [ch-gn]  b, tu a co △bhi = △mhk ➩ ih = kh   xet △aih va △akh co  ah chung  ih = kh [c/m tr]  ∠aih = ∠akh [= 90 do]  ➩ △aih = △kah [ch-cgv]  ➩ ∠iah = ∠kah  ➩ ah la p/g cua ∠bac

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)