K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC

13 tháng 11 2018

cam on ban rat nhieu !

ban hoc gioi qua!

ban co the ve hinh ho minh duoc ko a ?

12 tháng 4 2018

Vì I là giao điểm của các tia phân giác của góc B và góc C
-> AI là tia phân giác của góc BAC
-> Góc BAI = góc IAC = 1/2 góc BAC
Vì BI là tia phân giác của góc ABC
-> Góc ABI = góc IBC = 1/2 góc ABC
Vì CI là tia phân giác của góc ACB
-> Góc BCI = góc ICA = 1/2 góc ACB
Vì góc CID là góc ngoài của tam giác AIC
-> góc CID = góc IAC + góc ICA = 1/2 góc BAC + 1/2 góc BCA 
                = 1/2*( góc BAC + góc BCA )
                  =1/2*( 180 độ -góc ABC )
                = 90 độ -1/2 góc ABC                         1
Xét tam giác BIH vuông tại H -> góc IBC + goc BIH = 90độ 
                                               -> góc BIH                = 90 độ -góc
                                               -> góc BIH              = 90 độ -1/2 góc ABC            2
Từ 1 và 2 -> góc CID = góc BIH (đpcm)

17 tháng 4 2017

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

17 tháng 4 2017

tra loi jup minh cau hoi

10 tháng 2 2018

mk ko biet ve hinh

A B C I H K E F

a,*  Xét tam giác ABI và tam giác ACI có :

           cạnh AI chung

           góc BAI = góc CAI ( vì AI là phân giác góc A )

           AB = AC 

Do đó : tam giác ABI = tam giác ACI ( c.g.c )

\(\Rightarrow\)IB = IC ( cạnh tương ứng ) ( 1 )

* Vì AB = AC nên tam giác ABC cân tại A :

=> góc B = góc C 

Xét hai tam giác vuông BHI và tam giác vuông CKI có :

       góc BHI = góc CKI = 90độ 

        IB = IC ( theo ( 1 ) )

       góc B = góc C  ( theo chứng minh trên )

Do đó : tam giác BHI = tam giác CKI ( cạnh huyền - góc nhọn )

=> IH = IK ( cạnh tương ứng )

b,Xét tam giác HIE và tam giác KIF có :

            góc IHE = góc IKF = 90độ

            IH = IK  ( theo câu a )

            góc HIE = góc KIF( đối đỉnh )

Do đó : tam giác HIE = tam giác KIF ( g.c.g )

=> IE = IF ( cạnh tương ứng )

=> tam giác IEF cân tại I

=> góc IEF = góc IFE = \(\frac{180^0-\widehat{EIF}}{2}\)(2)

 Ta lại có : IH = IK 

=> tam giác IHK cân tại I

=> góc IKH = góc IHK = \(\frac{180^0-\widehat{HIK}}{2}\) (3)

mà góc HIK = gócEIF (4)

Từ (2) , (3) và (4) suy ra : 

góc IEF = góc IFE = góc IKH = góc IHK 

mà góc IEF = góc IKH ở vị trí so le trong

=>  HK // EF .

Học tốt

13 tháng 8 2020

A B C I H K 1 2 3 4 E F N

Vì AB = AC => tam giác ABC cân tại A 

=> <B = <C

Vì <AHI = <AKI (= 90o)

mà <HAI = <KAI 

=> <AHI - <HAI = <AKI - <KAI

=> I2 = I3 

Xét tam giác vuông AHI và tam giác vuông AKI có : 

+ <HAI = <KAI (gt)

+) <I2 = I3 (cmt)

+) AI chung

=> \(\Delta AHI=\Delta AKI\)(g.c.g)

=> IH = IK (cạnh tương ứng)

Xét tam giác ABI = tam giác ACI có 

+) AB = AC

+) <BAI = <CAI

+) AI chung

=> tam giác ABI = tam giác ACI (c.g.c)

=> BI = CI (cạnh tương ứng)

b) Kéo dai AI sao cho AI giao EF tại N

Xét tam giác HIE và tam giác KIF có : 

+) <IHE = <IKF (= 90o)

+) <HIE = <KIF (đối đỉnh)

+) HI = IK (câu a)

=> tam giác HIE = tam giác KIF (g.c.g)

=> HE = KF 

Lại có AH = AK (vì AB = AC ; BH = CK => AB - BH = AC - CK => AH = AK)

=> AH + HE = AK + KF

=> AE = AF

=> tam giác AEF cân tại A => <E = <F

Trong tam giác AEF có <A + <E + <F = 180o 

=> <A + 2<F = 180o (Vì <E = <F)

=> <F = (180o - <A) : 2 (1)

Vì AH = AK

=> Tam giác AHK cân tại A

=> <AHK = <AKH

Trong tam giác AHK có

<A + <AHK + <AKH = 180o

=> <A + 2<AKH = 180o (Vì <AHK = <AKH)

=> <AKH = (180o - A)/2 (2)

Từ (1) (2) => <AKH = <F

=> HK//EF (2 góc đồng vị bằng nhau) 

17 tháng 6 2017

A B C D F 1 2 1 3

a, Xét \(\Delta ABD;\Delta EBD\) có:

\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)

BD chung

\(\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

=> AB=EB => B nằm trên trung trực của AE

AD=ED => D nằm trên trung trực của AE

=> BD là trung trực của AE.

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF;\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)

Vậy DF=DC

c, Ta có:

\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)

\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)

Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF

=> \(BD\perp FC\). (1)

Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => AE//FC

Vậy AE//FC