Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
DO đó: ABCD là hình bình hành
Suy ra: AB//CD và AB=CD
a) xét tam giác AMBvà tam giácCMD có
góc AMB=gócCMD(đối đỉnh)
MA=MC
MD=MB
suy ra tam giác AMB=tam giác CMD
b) tam giác AMB=tam giác CMD(câu a)
AB=CD(hai cạnh tương ứng)
góc DCM=góc MAB(hai góc tương ứng và so le trong)
suy ra AB//CD
câu c đang tìm hiểu từ từ nha tick đi rồi giải câu c luôn cho
A B E D C M
a) Xét \(\Delta\)AMB & \(\Delta\)CMD có:
MB=MD( giả thiết)
góc AMB= góc CMD(2 góc đối đỉnh)
AM=MC( vì M là trung điểm của AC)
=>\(\Delta\)AMB=\(\Delta\)CMD(c.g.c)
b) Theo a) \(\Delta\)AMB=\(\Delta\)CMD
=>AB=CD(2 cạnh tương ứng)
=>góc BAM= góc DCM( 2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong=>AB//CD
c) theo b) AB//CD
=> góc ABC= góc BCE( 2 góc so le trong)
Ta có: AB=CD( theo c/m b)
mà CD=CE( vì C là trung điểm DE)
=>AB=EC
Xét \(\Delta\)ABC & \(\Delta\)ECB có:
AB=EC( theo c/m trên)
góc ABC= góc ECB( theo cm trên)
AC là cạnh chung
=>\(\Delta\)ABC=\(\Delta\)ECB(c.g.c)
=>góc ACB= góc EBC( 2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=>AC//BE
a, Xét \(\Delta\)AMB và \(\Delta\)CMD
MB = MD (gt)
^AMB = ^CMD (đối đỉnh)
AM = CM (gt)
=> \(\Delta\)AMB = \(\Delta\)CMD (c.g.c)
b, Vì \(\Delta\)AMB = \(\Delta\)CMD
=> ^BAM = ^DCM ( 2 góc tương ứng )
Vậy : AB = CD và AB//CD
Mình ghép câu b vào câu a luôn nhé bạn !!
a) Xét ΔAMB và ΔCMD có
AM=CM( do M là trung điểm của AC)
Góc AMB= góc CMD(đối đỉnh)
BM=DM
Suy ra : ΔAMB=ΔCMD(c.g.c)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)
=> CD//AB
b ) Xét ΔANE và ΔBNC có
AN=NB( do N là trung điểm của AB)
Góc ANE= góc BNC( đối đỉnh)
NC=NE
=> ΔANE=ΔBNC(c-g-c)
=> AE=BC và góc AEN= góc BCN
=> EA//BC
Chứng minh tương tự ta có AD=BC và AD//BC
=> A;E;D thẳng hàng
Mà AE=AD
=> A là trung điểm của ED
A B C M D 1 2
Xét ∆ABM và ∆CDM có :
AM = MC (gt)
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
BM = MD (gt)
=> ∆ABM = ∆CDM (c - g - c)
b ) Theo a ) ∆ABM = ∆CDM => \(\widehat{BAM}=\widehat{DCM}\) ( cạnh T/Ư ) Mà lại ở vị trí SLT => AB // CD
a/
Xét tam giác AMB và tam giác CMD, có:
MA=MC (gt)
MB=MD (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đđ)
Do đó: tam giác AMB=tam giác CMD (cgc)
b/
Vì tam giác AMB=tam giac CMD (cmt) nên AB=CD
Và \(\widehat{BAM}=\widehat{MCD}\)
Mà chúng ở vị trí so le trong
Vậy AB//CD