K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc EAM  = góc FAM ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc BAM  = góc CAM  ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

5 tháng 5 2023

đăng ký kênh MrBeast

 

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^B=C (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^B=C (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^BAD=CAD (2 góc t/ứng)

=> AD là tia p/giác của ���^BAC

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900BEM=CFN=900 (gt)

  BM = CN (gt)

    �^=�^B=C (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2AEF=AFE=21800A (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800A (2)

Từ (1) và (2) => ���^=�^AEF=B

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900AEH=AFH=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^EAH=FAH (2 góc t/ứng)

=> AH là tia p/giác của �^A

Mà AD cũng là tia p/giác của �^A

=> AH  AD 

=> A, D, H thẳng hàng