Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B M D E d
a) Ta có : CE ⊥ d
BD ⊥ d
\(\Rightarrow\)CE // BD (ĐPCM)
b) Xét △CEA và △ADB có :
AC = AB
\(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))
\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)
c) Có △CEA = △ADB
\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)
\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)
d) △ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = BM = CM
\(\Rightarrow\)△ABM cân tại M
Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)
\(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)
\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)
Xét △ADM và △CEM có :
EC = AD
\(\widehat{ECM}=\widehat{MAD}\)
AM = CM
\(\Rightarrow\)△ADM = △CEM (c-g-c) (ĐPCM)
\(\Rightarrow\)EM = MD (Cặp cạnh tương ứng) (1)
Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)
\(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)
\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)
\(\Rightarrow\widehat{EMD}=90^o\)(2)
Từ (1) và (2) suy ra △DME vuông cân tại M.
A B C D E
Do xy không cắt đoạn BC
=> xy //BC
=> ECBD là hình chữ nhật'
Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)
=> \(\Delta ABD=\Delta ACE\)
=> AE=AD
=> Tam giác ADE cân tại E
\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)
=> EC=EA
Tương tự: AD=BD
=> DE=AE+AD=EC+BD
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :
AB = AC (gt)
^AEC = ^ADB = 900
CE = BD (gt)
=> \(\Delta\)ABD = \(\Delta\)ACE
b, Ta có xy không cắt BC
=> xy//BC
=> ^DBA= ^DAB (vị trí đồng vị)
=> \(\Delta\) BDA cân tại D
=> DA=DB
\(\Delta\)EAC cân tại E (cmt)
=> EA=EC
=> DE = AD + AC = BD + CE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((