Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C
Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Vậy tam giác ABC vuông tại A (1 điểm)
a) Ta có: AB<BC<AC (vì 6<8<10)
=> góc C < góc A < góc B (quan hệ giữa góc và cạnh đối diện)
b) Nhận thấy: \(AB^2+BC^2=6^2+8^2=36+64=100\)
\(AC^2=10^2=100\)
\(\Rightarrow AB^2+BC^2=AC^2\left(=100\right)\)
Theo định lí Pi-ta-go đảo thì tam giác ABC có độ dài 3 cạnh như trên là tam giác vuông.
c) A C B M
Ta có: MA + MC < AC (bất đẳng thức trong tam giác ACM)
=> MA + MC < AC + AB (ĐPCM)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
khi muốn bt nó là tam giác gì thì ta thường áp định lí pi-ta-go đảo vào bài đó và thường là xét các cạnh
ta sẽ lấy tổng bình phương hai cạnh nhỏ nhất xem có bằng bình phương cạnh lớn nhất hay ko
áp vào bài này
lấy: 62+82=36+64=100
100=102
Vậy tam giác này là tam giác vuông
a) Ta có: AB < AC < BC ( 6 < 8 < 10 )
⇒ \(\widehat{C}< \widehat{B}< \widehat{A}\) Vì cạnh đối diện của góc đó càng lớn thì góc đó càng lớn
Ta có: \(AB^2+AC^2=BC^2\Leftrightarrow6^2+8^2=10^2\)
Suy ra: △ ABC là tam giác vuông ( định lý Py - ta - go đảo )
b) Ta có:
- BH là hình chiếu vuông góc của BM lên BC
- HC là hình chiếu vuông góc của MC lên BC
Mà BH < HC
⇒ MB < MC
Vậy MB < MC
a) Ta có: \(6^2 +8^2=36+64=100\)
\(10^2=100\)
\(\Rightarrow\)\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)vuông tại \(A\)
b) Áp dụng định lý Pytago vào tam giác vuông \(ABH\)ta có:
\(AH^2=AB^2-BH^2\)
\(\Leftrightarrow\)\(AH^2=8^2-6,4^2=23,04\)
\(\Leftrightarrow\)\(AH=\sqrt{23,04}=4,8\)
Vậy....
a: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
b: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
a, Ta có AC > BC > AB
=> ^B > ^A > ^C
b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng*
Vậy tam giác ABC vuông tại B