Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AB2 = 52 = 25 cm
Mà AC2 + BC2 = 42 + 32 = 15 + 9 = 25cm
=> AB2 = AC2 + BC2
=> ∆ABC vuông tại C
b) Xét ∆ vuông ACE và ∆ vuông AKE ta có :
AE chung
CAE = BAE ( AE là phân giác CAB )
=> ∆ACE = ∆AKE ( ch-gn)
=> AC = AK = 3cm
Mà AK + KB = AC
=> KB = 5 - 3 = 2cm
c ) Xét ∆ vuông KEB ta có :
KE < EB ( Quan hệ giữa cạnh huyền và cạnh góc vuông)
Mà ∆ACE = ∆AKE (cmt)
=> CE = EK
=> EC< EB
d) Vì ∆ACE = ∆AKE (cmt)
=> AC = AK
=> ∆ACK cân tại A
Xét ∆ vuông ECD và ∆ vuông CKB ta có :
CE = EK (cmt)
KEB = CED ( đối đỉnh)
=> ∆ECD = ∆CKB (cgv -gn)
=> CD = KB ( tương ứng)
Mà AC + CD = AD
AK + KB = AB
=> AD = AB
=> ∆ABD cân tại A
Vì ∆ACK cân tại A (cmt)
=> ACK = \(\frac{180°\:-\:CaB}{2}\)
Vì ∆ABD cân tại A
=> ADC = \(\frac{180°\:-\:CAB}{2}\)
=> ADC = ACK
Mà 2 góc này ở vị trí đồng vị
=> CK //DB
a) Ta có :
BC2 = 25cm
AC2 + AB2 = 9 + 16 = 25cm
=> BC2 = AB2 + AC2
=> ∆ABC vuông tại C
b) Xét ∆ vuông CAE và ∆ vuông KAE ta có :
AE chung
CAE = KAE ( AE là phân giác )
=> ∆CAE = ∆KAE (ch-gn)
=> AC = AK = 3cm
Mà AK + KB = AB
=> KB = 2cm
c) Vì ∆CAE = ∆KAE (cmt)
=> CE = EK
Xét ∆ vuông KEB ta có :
EK > EB ( Trong ∆ vuông cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền)
Mà EK = CE
=> CE< EB
a ) \(\Delta ABC\)có : AC2 + BC2 = 32 + 42 = 25
AB2 = 52 = 25
=> AC2 + BC2 = AB2
Theo đ/l Py - ta - go đảo => Tam giác ABC vuông
C A K B E D
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
A B C E K D 1 2 1
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
a) Có \(AB^2=5^2=25\) ; \(AC^2+BC^2=3^2+4^2=25\)
=> \(AB^2=AC^2+BC^2\)
=> \(\Delta ABC\) vuông tại C
b) Xét \(\Delta CAE\) và \(\Delta KAE\) có :
\(\widehat{ACE}=\widehat{AKE};\widehat{CAE}=\widehat{KAE};AE:chung\)
=> \(\Delta CAE\) = \(\Delta KAE\)
=> AC = AK = 3cm ; CE = KE
Có : BK = AB - AK = 5- 3 = 2cm
c) Xét \(\Delta EBK\)vuông tại K
=> EB > EK mà EK = EC
=> EB > EC
d) Có AC = AK => \(\Delta AKC\)cân tại A
=> \(\widehat{2AKC}=180^o-\widehat{A}\) (1)
Xét \(\Delta CED\) và \(\Delta KEB\)có :
\(\widehat{ECD}=\widehat{EKB};\widehat{CED}=\widehat{KEB};CE=KE\)
=> \(\Delta CED\) = \(\Delta KEB\)
=> CD = KB
Có AD = AC + CD ; AB = AK + KB
=> AD = AB
=> \(\Delta ADB\) cân tại A
=> \(2\widehat{ABD}=180^o-\widehat{A}\) (1)
Từ ( 1 ) và (2) => \(\widehat{AKC}=\widehat{ABD}\) mà 2 góc này nằm ở vị trí đồng vị
=> CK // BD