K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Xét \(\Delta\)AMN và \(\Delta\)ABC có:

\(\frac{AM}{AB}=\frac{AN}{AC}\left(\frac{10}{15}=\frac{14}{21}\right)\)

=> MN // BC  (1)

Gọi M là trung điểm của BC.

Gọi G là giao điểm AM và MN 

Xét \(\Delta\)ABM có: 

MG// BM  ( theo(1))

=> \(\frac{AG}{AM}=\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3}\)

=> G là trọng tâm của \(\Delta\)ABC 

Vậy MN qua trong tâm \(\Delta\)ABC.

14 tháng 2 2020

A B C M N O H

14 tháng 2 2020

Cho AH là trung tuyến tgiac ABC, AH cắt MN tại O

\(\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3},\frac{AN}{AC}=\frac{14}{21}=\frac{2}{3}\)

\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{2}{3}\Rightarrow\) MN//BC

Xét \(\Delta ABH\) có MO//BH \(\Rightarrow\frac{AM}{AB}=\frac{AO}{AH}=\frac{2}{3}\Rightarrow\) O là trọng tâm tgiac ABC đc MN đi qua

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượtlấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.1.Chứng minh MN//BC2. Tính MN biết BC = 36 cmCâu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳngAD = 5 cm. Chứng minh ABD \= ACB [Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,AC = 20 cm. Tính DB và DC.Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và...
Đọc tiếp

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượt
lấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.
1.Chứng minh MN//BC
2. Tính MN biết BC = 36 cm
Câu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳng
AD = 5 cm. Chứng minh ABD \= ACB [
Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,
AC = 20 cm. Tính DB và DC.
Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH.
1.  Chứng minh BA2 = BH.BC.
2.  Tính độ dài cạnh AC khi biết AB = 30 cm, AH = 24 cm.
3.  Trên cạnh AC lấy điểm M sao cho CM = 10 cm, trên cạnh BC lấy điểm N sao cho CN
= 8 cm. Chứng minh tam giác CMN vuông.
4.  Chứng minh CM.CA = CN.CB
Câu 5. (7đ) Cho tam giác ABC nhọn và đường cao AH. Kẻ HI ⊥ AB và HK ⊥ AC.
1. Chứng minh AH2 = AI.AB.

2. Chứng minh 4AIK v 4ACB

3.  Đường phân giác của góc AHB cắt AB tại E. Biết EB/ AB = 2/ 5 . Tính tỉ số BI /AI
Câu 6.  Cho tam giác AOB cân tại O (O <b 90◦
) và hai đường cao AD, BE. Đường vuông
góc với OA tại A cắt tia OB tại C. Chứng minh:
1.  ED//AB.
2.  OB2 = OE.OC
3. AB là đường phân giác của DAC \.
4. (Chứng minh BD.OA = BC.OE

giúp mình với nhé :( cần gấp

0
30 tháng 3 2016

k đi mình làm cho

30 tháng 3 2016

bạn giải dùm mình được hk

2 tháng 5 2021

a, theo pitago đảo: 21+282=1225=352 suy ra tam giác ABC vuông

b,theo pitago

AH2=AB2-BH2=AC2-CH2 suy ra 2AH2=AB2+AC2-BH2-CH

suy ra 2AH2=BC2-BH2-CH2 (Mà BC=BH+CH) suy ra 2AH2=2BHxCH

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK 

 

Xét ΔANM và ΔABC có

AN/AB=AM/AC

\(\widehat{NAM}\) chung

Do đó: ΔANM\(\sim\)ΔABC

16 tháng 3 2022

áp dụng định lí nào thế ạ

Đề thiếu rồi bạn

18 tháng 3 2019

Lý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ AED và Δ ABC cóLý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ AED ∼ Δ ABC ( c - g - c )

15 tháng 8 2019

Lý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ AED và Δ ABC cóLý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ AED ∼ Δ ABC ( c - g - c )