Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:
HB=HD ( gt)
AH chung
=> tam giác AHB=tam giác AHD
hok ngu toan mấy câu còn lại không biết làm
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
C B A H D E K
a,Xét t/g vuông AHD và t/g vuông AHB có :
AH chung
HD = HB (gt)
=> t/g AHD = t/g AHB ( ch-cgv )
=> AB = AD
=> t/g BAD cân tại A
b, Để CD là tia p/g của ACE
Thì sau 1 vài bước phân tích ta có
DCE^ + HAB^ = DCA^ + HBA^
Vì cần cm ACE^ = DCA^
Nên ta có thêm gt từ trên trời rơi xuống là : HAB^ = HBA^
=> HA = HB
Do gt đưa ra ko tm nên vô lí :)) làm bừa đấy ạ
c, Theo câu b ta có : ECD^ = ACD^
Xét t/g vuông CHK và t/g vuông CHA có :
CH chung
ECD^ = ACD^ ( cm câu a )
=> t/g CHK = t/g CHA ( cgv-gn )
Câu d thì chịu r :D