K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: E đối xứng A qua B

=>B là trung điểm của AE

=>\(\left\{{}\begin{matrix}x_A+x_E=2\cdot x_B\\y_A+y_E=2\cdot y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E+1=2\cdot\left(-2\right)=-4\\y_E+2=2\cdot6=12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E=-4-1=-5\\y_E=10\end{matrix}\right.\)

Vậy: E(-5;10)

b: A(1;2); B(-2;6); C(9;8)

\(AB=\sqrt{\left(-2-1\right)^2+\left(6-2\right)^2}=\sqrt{3^2+4^2}=5\)

\(AC=\sqrt{\left(9-1\right)^2+\left(8-2\right)^2}=\sqrt{8^2+6^2}=10\)

\(BC=\sqrt{\left(9+2\right)^2+\left(8-6\right)^2}=\sqrt{11^2+2^2}=\sqrt{125}=5\sqrt{5}\)

Vì \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Xét ΔCAB có CI là phân giác

nên \(\dfrac{IA}{IB}=\dfrac{CA}{CB}=\dfrac{10}{5\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(\dfrac{IA}{IB+IA}=\dfrac{2}{2+\sqrt{5}}\)

=>\(\dfrac{IA}{BA}=\dfrac{2}{\sqrt{5}+2}\)

=>\(AI=2\left(\sqrt{5}-2\right)\cdot AB\)

\(\overrightarrow{AI}=\left(x-1;y-2\right);\overrightarrow{AB}=\left(-3;4\right)\)

I nằm giữa A và B nên \(\overrightarrow{AI};\overrightarrow{AB}\) cùng hướng

=>\(\overrightarrow{AI}=\left(2\sqrt{5}-4\right)\cdot\overrightarrow{AB}\)

=>\(\left\{{}\begin{matrix}\left(x-1\right)=\left(2\sqrt{5}-2\right)\cdot\left(-3\right)=-6\sqrt{5}+6\\y-2=\left(2\sqrt{5}-2\right)\cdot4=8\sqrt{5}-8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-6\sqrt{5}+7\\y=8\sqrt{5}-6\end{matrix}\right.\)

4 tháng 12 2023

a) Để tìm tọa độ điểm E đối xứng với A qua B, ta sử dụng công thức tọa độ điểm đối xứng:
- X = 2x' - x
- Y = 2y' - y

Với A(1, 2) và B(-2, 6), ta có:
- X = 2 * (-2) - 1 = -5
- Y = 2 * 6 - 2 = 10

Vậy tọa độ của điểm E là E(-5, 10).

b) Để tìm tọa độ điểm I chân đường phân giác trong tại đỉnh C của tam giác ABC, ta sử dụng công thức:
- X = (ax + cx) / 2
- Y = (ay + cy) / 2

Với A(1, 2), B(-2, 6) và C(9,😎, ta có:
- X = (1 + 9) / 2 = 5
- Y = (2 +😎 / 2 = 5

Vậy tọa độ của điểm I là I(5, 5).

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

17 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.34, -5.84) A = (-4.34, -5.84) A = (-4.34, -5.84) B = (11.02, -5.84) B = (11.02, -5.84) B = (11.02, -5.84)
Hình thoi nhận O là tâm đối xứng.
\(\left|x_A\right|=\left|x_C\right|=2AC\)\(\Rightarrow\left|x_A\right|=\left|x_C\right|=8:2=4\).
Do \(\overrightarrow{OC}\)\(\overrightarrow{i}\) cùng hướng nên \(x_C=4;x_A=-4\).
A, C nằm trên trục hoành nên \(y_A=y_C=0\).
Vậy \(A\left(-4;0\right);C\left(4;0\right)\).
\(\left|y_B\right|=\left|y_D\right|=2BD\)\(\Rightarrow\left|y_B\right|=\left|y_D\right|=6:2=3\).
Do \(\overrightarrow{OB}\)\(\overrightarrow{j}\) cùng hướng nên \(y_B=3;y_D=-3\).
B, D nằm trên trục tung nên \(x_B=x_D=0\).
Vậy \(B\left(0;3\right);D\left(0;-3\right)\).
b) \(x_I=\dfrac{x_B+x_C}{2}=\dfrac{0+4}{2}=2\); \(y_I=\dfrac{y_B+y_C}{2}=\dfrac{3+0}{2}=\dfrac{3}{2}\).
Vậy \(I\left(2;\dfrac{3}{2}\right)\).
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-4+0+4}{3}=0\).
\(y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{0+3+0}{3}=1\).
Vậy \(G\left(0;1\right)\).
c) I' đối xứng với I qua tâm O nên \(I'\left(-2;-\dfrac{3}{2}\right)\).
d) \(\overrightarrow{AC}\left(8;0\right);\overrightarrow{BD}\left(0;-6\right);\overrightarrow{BC}\left(4;-3\right)\).

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)

Trong mặt phẳng tọa độ cho 3 điểm A ( 1,2), B ( -2,6) C( 9,8)a) Chứng minh A,B,C là 3 đỉnh của một tam giác. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)b) Gọi A', B', C' lần lượt là trung điểm của BC, AC,AB. Tìm tọa độ A', B', C'c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABCd) Tìm tọa độ trực tâm H và trọng tâm G của tam giác ABCe) Tính chu vi và diện tích tam giác ABCf) Tìm tọa độ điểm N...
Đọc tiếp

Trong mặt phẳng tọa độ cho 3 điểm A ( 1,2), B ( -2,6) C( 9,8)

a) Chứng minh A,B,C là 3 đỉnh của một tam giác. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)

b) Gọi A', B', C' lần lượt là trung điểm của BC, AC,AB. Tìm tọa độ A', B', C'

c) Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC

d) Tìm tọa độ trực tâm H và trọng tâm G của tam giác ABC

e) Tính chu vi và diện tích tam giác ABC

f) Tìm tọa độ điểm N trên Ox để tam giác ANC cân tại N

g) Tìm tọa độ điểm D sao cho ABDC là hình chữ nhật

h) Tìm tọa độ điểm K trên Ox để AOKB là hình thang đáy OA

i) Tìm điểm I sao cho \(\overrightarrow{IA}+3\overrightarrow{IB}-\overrightarrow{IC}=\overrightarrow{0}\)

j) Tìm tập hợp điểm M sao cho 

\(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)

k) Tìm điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất 

 

 

0