K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vào TK mk nhá ! Nguồn h o c 2 4 270264

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

9 tháng 6 2021

bạn ơi góc HEC có vuông đâu

 

a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có

\(\widehat{ACD}\) chung

Do đó:ΔADC\(\sim\)ΔBEC

b: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{FBC}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA

Suy ra: BF/BD=BC/BA

hay \(BF\cdot BA=BD\cdot BC\)

 

8 tháng 3 2022

có hình ko cho mik xin đi :))

30 tháng 4 2019

a, Xét tgABE và tgACF có:

góc AEB = góc CFA = 90o 

góc BAC chung

Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)

=> AB/AC = AE/AF (các cặp cạnh tương ứng)

=> AB.AF = AC.AE

30 tháng 4 2019

xét tam giác ABE và tam giác ACF có : 

góc AEB = góc AFC = 90 do ...

góc CAB chung

=> tam giác ABE ~ tam giác ACF (g.g)

=> AB/AC = AE/AF

=> AB.AF = AC.AE

30 tháng 5 2020

i don ' t know

31 tháng 7 2023

a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)

c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)  (1).

 Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)   (2).

Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)

31 tháng 7 2023

\(\dfrac{ }{ }\)