K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2017

CAI NAY mk chua hoc xl ban ,chuc ban nam ms vv hp bên gia đinh nhe ////

23 tháng 8 2015

Đề bài bị thừa hai điểm M,N nhé bạn.

Gọi X,Y tương ứng là tiếp điểm của hai đường tròn \(\left(O_1\right),\left(O_2\right)\)  với \(BC\). Ta có \(\Delta O_1XH\sim\Delta O_2YH\) (cùng là tam giác vuông cân). Suy ra \(\frac{O_1H}{O_2H}=\frac{r_1}{r_2}\) với \(r_1,r_2\) tương ứng là bán kính đường tròn nội tiếp hai tam giác \(\Delta AHB,\Delta CHA.\)\(\Delta AHB\sim\Delta CHA\)  nên \(\frac{r_1}{r_2}=\frac{AB}{CA}\to\frac{O_1H}{O_2H}=\frac{AB}{CA}\to\Delta O_1HO_2\sim\Delta BAC\)  (c.g.c). Suy ra \(\angle ABC+\angle HO_2O_1=90^{\circ}.\)

Đến đây ta có \(\angle CO_2O_1+\angle O_1BC=\angle HO_2C+\angle HO_2O_1+\angle O_1BC\)

\(=180^{\circ}-\frac{\angle AHC+\angle ACH}{2}+\angle HO_2O_1+\angle O_1BC=180^{\circ}-\frac{180^{\circ}-\angle HAC}{2}+\angle HO_2O_1+\angle O_1BC\)

\(=90^{\circ}+\angle HO_2O_1+\angle ABC=180^{\circ}.\)

Vậy tứ giác \(BCO_1O_2\) nội tiếp.

8 tháng 7 2021

A B C M N P Q R S

Gọi R,S lần lượt là điểm đối xứng với C,B qua N,P. Lấy Q' là trung điểm của RS.

Ta có: \(AR=CA-CR=CA-2.\frac{CA+CP-AP}{2}=AP-CP\)

Tương tự \(AS=AP-BP\). Vì \(BP=CP< PA\) nên \(AR=AS\)

Suy ra AQ' là trung tuyến của \(\Delta\)RAS và cũng là đường phân giác \(\widehat{BAC}\)

Mặt  khác tam giác BPC cân tại P có đường tròn nội tiếp tiếp xúc với BC tại M, suy ra M là trung điểm BC

Theo tính chất đường trung bình thì tứ giác MNQ'P là hình bình hành

Do vậy Q' trùng với Q. Mà AQ' là phân giác góc BAC nên AQ là phân giác góc BAC.

8 tháng 7 2021

Sửa cả đề và trong bài giải luôn: Thay điểm P nằm trong tam giác thành P', tránh trùng với điểm P trên cạnh AB.

5 tháng 5 2020

đề sai. muốn c/m đề sai thì nói. mình c/m cho 

10 tháng 4 2020

Gọi G' là giao của IJ và AA1

Xét \(\Delta\)ABC có B1;C1 lần lượt là trung điểm của cạnh AC và AB

=> B1C1 =\(\frac{BC}{2}\). Tương tự: A1B1=\(\frac{AB}{2}\); C1A1=\(\frac{CA}{2}\)

Xét \(\Delta\)A1B1C1 và \(\Delta\)ABC có: \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{C_1A_1}{CA}\left(=\frac{1}{2}\right)\)

Do đó tam giác A1B1C1 đồng dạng với tam giác ABC (c.c.c)

=> \(\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C}=\widehat{ABC}\)

mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2}\)

Do đó: \(\Delta JA_1B_1\) đồng dạng với tam giác IAB (g.g)

=> \(\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)

Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\left(slt;AB//A_1B_1\right)\). Nên \(\widehat{IAA_1}=\widehat{IA_1A}\Rightarrow AI//A_1J\)

Xét tam giác G'AI có: A1J // AI => \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\) (hệ quả của định lý Talet)

=> \(AG'=\frac{2}{3}AA_1\)

Tam giác ABC có AA1 là đường trung tuyến, G' thuộc đoạn thẳng AA1 và AG' \(=\frac{2}{3}AA_1\)

Do đó G' là trọng tâm tam giác ABC, G' thuộc đoạn thẳng AA1 và AG'=\(\frac{2}{3}AA_1\)