Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hàm số sin, ta có: \(\frac{a}{\sin A}+\frac{b}{\sin B}+\frac{c}{\sin C}=\frac{a+b+c}{\sin A+\sin B+\sin C}\)
\(\Rightarrow b=\frac{\left(a+b+c\right).\sin B}{\sin A+\sin B+\sin C}\)
\(AH=b\sin C=\frac{\left(a+b+c\right)\sin B.\sin C}{\sin A+\sin B+\sin C}\)
\(\Leftrightarrow AH=\frac{58.\sin58^o20'.\sin82^o35'}{\sin58^o20'+\sin82^o35'+\sin\left(180^o-58^o20'-82^o35'\right)}\approx19,79288\)
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Áp dụng Py-Ta-Go vào tam giác AHB => AB = 3
Sin B = \(\frac{AH}{AB}=\frac{2}{3}\)=> Góc B =41*48**=>Góc C = 48*12**
AC =AB.tanB=3.tanB=2,6
Py-Ta-Go => BC = 3,9
\(\widehat{C}=90^0-\widehat{B}=35^034'\\ BC=\dfrac{AC}{\sin B}=\dfrac{12}{\sin54^026'}\approx14,75\left(cm\right)\)
Ta có:
\(a^2=b^2+c^2-2bc\cos\alpha\)
A = \(\cos^{-1}\left(\frac{7,61^2+6,95^2-8,32^2}{2.7,61.6,95}\right)=69,53029094....=69^o31'49''\)