K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2019

\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(=1-\frac{1}{2}sin^22x\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=2\end{matrix}\right.\) \(\Rightarrow a+3b+c=?\)

\(\frac{sin\left(A-B\right)}{sinC}=\frac{sin\left(A-B\right).sinC}{sin^2C}=\frac{sin\left(A-B\right).sin\left(A+B\right)}{sin^2C}=\frac{-\frac{1}{2}\left(cos2A-cos2B\right)}{sin^2C}\)

\(=\frac{-\frac{1}{2}\left(1-2sin^2A-1+2sin^2B\right)}{sin^2C}=\frac{sin^2A-sin^2B}{sin^2C}=\frac{\left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2}{\left(\frac{c}{2R}\right)^2}=\frac{a^2-b^2}{c^2}\)

NV
5 tháng 5 2019

Câu 3:

a/ Đề dị dị, là \(\frac{cosA+cosB}{sinB+sinC}\) hay \(\frac{cosB+cosC}{sinB+sinC}\) bạn?

b/ \(cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B=C\Rightarrow\Delta ABC\) cân tại A

AH
Akai Haruma
Giáo viên
10 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM ta có: \(\frac{a^3}{b}+ab\geq 2a^2\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)

Theo hệ quả của BĐT AM-GM thì:

\(a^2+b^2+c^2\geq ab+bc+ac\)

Do đó, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c>0\)

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

ab<c<=>a2+b22ab<c2a−b<c<=>a2+b2−2ab<c2

bc<a<=>b2+c22bc<a2b−c<a<=>b2+c2−2bc<a2

ac<b<=>a2+c22ac<b2a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
22 tháng 2 2017

Mình làm đc rồi,hjhj

Dùng định lý cos thế vào 2 vế sẽ cùng bằng một biêu thức thứ 3.

NV
17 tháng 9 2019

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca=3\)

Do \(a>0\Rightarrow\left(a-1\right)^2\left(a+\frac{1}{2}\right)\ge0\)

\(\Rightarrow a^3-\frac{3}{2}a^2+\frac{1}{2}\ge0\Rightarrow a^3\ge\frac{3}{2}a^2-\frac{1}{2}\)

Tương tự ta có: \(b^3\ge\frac{3}{2}b^2-\frac{1}{2}\) ; \(c^3\ge\frac{3}{2}c^2-\frac{1}{2}\)

Cộng vế với vế:

\(a^3+b^3+c^3\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge3.\frac{3}{2}-\frac{3}{2}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 9 2019

a>0 chứ a có >1 đâu mà (a-1)2(a+1/2)\(\ge\)0

NV
23 tháng 4 2019

3/

\(cos4A+cos4B+cos4C=2cos\left(2A+2B\right).cos\left(2A-2B\right)+2cos^22C-1\)

\(=2cos2C.cos\left(2A-2B\right)+2cos^22C-1\)

\(=2cos2C\left(cos\left(2A-2B\right)+cos2C\right)-1\)

\(=2cos2C\left(cos\left(2A-2B\right)+cos\left(2A+2B\right)\right)-1\)

\(=4cos2A.cos2B.cos2C-1\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\end{matrix}\right.\)

4/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+\frac{1}{2}+\frac{1}{2}cos2C\)

\(=\frac{3}{2}+\frac{1}{2}\left(cos2A+cos2B+cos2C\right)\)

\(=\frac{3}{2}+\frac{1}{2}\left[2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\right]\)

\(=1+\frac{1}{2}\left(-2cosC.cos\left(A-B\right)+2cos^2C\right)\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left(cos\left(A-B\right)+cos\left(A+B\right)\right)\)

\(=1-2cosA.cosB.cosC\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)

NV
23 tháng 4 2019

1/ \(sinA+sinB+sin2\frac{C}{2}=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2cos\frac{A+B}{2}.cos\frac{C}{2}=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\Rightarrow\left\{{}\begin{matrix}a=0\\b=4\end{matrix}\right.\)

2/ \(sin4A+sin4B+sin4C=2sin\left(2A+2B\right)cos\left(2A-2B\right)+2sin2C.cos2C\)

\(=-2sin2C.cos\left(2A-2B\right)+2sin2C.cos2C\)

\(\)\(=2sin2C\left(cos2C-cos\left(2A-2B\right)\right)\)

\(=-4sin2C.sin\left(C+A-B\right)sin\left(C-A+B\right)\)

\(=-4sin2A.sin2B.sin2C\Rightarrow\left\{{}\begin{matrix}a=0\\b=-4\end{matrix}\right.\)